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The supplementary materials consist of:
A. Details of Im2Flow network architecture.

B. Details of the metrics we use for flow prediction eval-
uation

@)

. Quantitative results of flow prediction on HMDB-51
and Weizmann.

D. Comparison of different encoding schemes for motion
prediction.

E. Additional qualitative results.

F. Ablation study.

A. Details of Im2Flow Network Architecture

Our Im2Flow network architecture is adapted from those
in [3, |53] with some modifications. Let C; denote a
Convolution-BatchNorm-ReLU layer with k filters. CDy
denotes a Convolution-BatchNorm-Dropout-ReLLU layer
with a dropout rate of 50%. The encoder uses dilated-
convolutions [7], and the decoder uses up-convolutions. All
dilated-convolutions and up-convolutions use 4 x 4 spatial
filters applied with stride 2. After the last layer in the de-
coder, an up-convolution is followed by a Tanh layer to pro-
duce the flow image. BatchNorm is not applied to the first
layer in the encoder. The encoder uses leaky ReLUs with a
slope of 0.2, while ReL.Us in the decoder are not leaky. Skip
connections are added between each layer i in the encoder
and layer n — i in the decoder, where 7 is the total number of
layers. The skip connections concatenate activations from
layer i to layer n — i.
Encoder:

Co4-C128-C256-C512-C512-C512-C512-Cs12
Decoder:

CDs512-CD1024-CD1024-C1024-C1024-C512-C256-Ci28

The motion content loss network is the first two residual
blocks of ResNet18 [2], which produces an activation map
of size 128 x 28 x 28.

Bo Xiong
UT Austin

bxiong@cs.utexas.edu

Kristen Grauman
UT Austin

grauman@cs.utexas.edu

B. Details of the metrics we use for flow predic-
tion evaluation

We employ a suite of metrics, following prior work in
this area [4, 6]: End-Point-Error (EPE), Direction Similar-
ity (DS), and Orientation Similarity (OS). EPE computes
the Euclidean distance between the end point of the pre-
dicted optical flow vector and the ground-truth vector. Itis a
direct error measure, but is weak if the motion is small and
ambiguous in direction [4} |6]]. DS is the cosine similarity
between the prediction and the ground-truth, and OS (un-
signed version of DS) measures how parallel the predicted
and ground-truth flow vectors are (see [6] for details).
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OS is useful to evaluate predicted motions whose exact di-
rection may be ambiguous (e.g., push-ups in Fig. 1 in the
main paper).
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C. Quantitative Results of Flow Prediction on
HMDB-51 and Weizmann

Table [T] shows the flow prediction results on HMDB-51
and Weizmann, as a supplement to Table 1 in the main pa-
per, where due to space constraints we could show only the
results for UCF-101. Because the authors’ model for [6] is
trained only for UCF, for fair comparison, we compare with
only Pintea et al. [4] on HMDB-51 and Weizmann. On
these two datasets, our method still outperforms the prior
approach and the Nearest Neighbor baseline consistently by
a large margin across all metrics. These results are using the
same metrics as in the main paper. The results show the ef-
fectiveness of our proposed motion encoding and Im2Flow
network.



HMDB-51 EPE| EPE-Canny EPE-FG | DS1 DS-Canny DS-FG | OS1 OS-Canny OS-FG
Pintea et al. [4] | 2.621 2.683 3.576 0.001 0.000 -0.008 | 0.498 0.532 0.552
NN-pool5 3.635 3.847 4.124 -0.004 -0.005 -0.043 | 0.643 0.641 0.649
Ours 2.571 2.629 3.389 0.086 0.079 0.085 | 0.676 0.666 0.674
Weizmann EPE| EPE-Canny EPE-FG | DSt DS-Canny DS-FG | OS{ OS-Canny OS-FG
Pintea et al. [4] | 0.562 1.867 5.955 0.101 0.088 0.095 | 0.712 0.701 0.723
NN-pool5 0.588 2212 6.324 0.002 0.003 0.005 [ 0.689 0.688 0.695
Ours 0.512 1.739 5.455 0.380 0.366 0.375 | 0.801 0.789 0.824

Table 1. Quantitative results of dense optical flow prediction on HMDB-51 and Weizmann. | lower better, 1 higher better. Across all
measures, our method outperforms the baseline methods by a large margin. Because the model provided by Walker ez al. [6] is trained on

UCF-101, we don’t compare with them on HMDB-51 and Weizmann for fairness.

| Accuracy | mAP

Only Pixel L2 Loss 46.3 54.4
Without Action Label Supervision 49.5 57.2
Walker et al. [6] 21.2 29.9

Ours 51.0 58.8

Table 2. Ablation study. All results are in %.

D. Comparison of Different Encoding Schemes
for Motion Prediction

As discussed in Sec. 3.1 in the main paper, in this sec-
tion, we compare the motion prediction results of our en-
coding scheme with two other encoding schemes in the lit-
erature [[1, 8] to show the advantage of our encoding. These
two encoding schemes also encode optical flow as a single
three-channel image. Table |3| compares the flow prediction
results on UCF-101. Our encoding scheme is more suitable
for flow prediction, and produces much more reliable pre-
dictions.

E. Additional Qualitative Results

We show more qualitative results in this section. In the
supplementary video we attached, we show some motion
prediction results of video sequences using our Im2Flow
framework. We predict for each independent frame as if it
were a static image, and then just concatenate the frames
as laid on the video for visualization. There is no tempo-
ral smoothing between frames’ estimates. Our Im2Flow
network can predict motion in a variety of contexts, and
the prediction is pretty fine-grained. In Fig. [T} we show
more examples to illustrate how the inferred motion can
help recognition, as a supplement to Fig. 5 in the main pa-
per. While a classifier solely based on appearance can be
confused by actions appearing in similar contexts, the in-
ferred motion provides cues about the fine-grained differ-
ences among these actions to help recognition. For instance,
the last image shows a man playing nunchucks. However,

playing Yo-Yo, playing nunchucks, and playing juggling
balls usually appear in similar contexts. Showing the hand
movement of the man guides the classifier to make the cor-
rect prediction.

F. Ablation Study

As discussed in Sec. 3.2 in the main paper, we perform
an ablation study to examine the impact of motion con-
tent loss in our Im2Flow framework for recognition. Ta-
ble [2| compares the motion stream performance of several
variants of our model on PennAction dataset. We com-
pare our model (trained on UCF-101) with one variant that
completely removes the motion content loss and only uses
the pixel L, loss (A = 0); one variant that uses a ResNet-
18 network that is not fine-tuned for action classification.
We see that motion content loss helps to preserve high-level
motion features, leading to better recognition performance
(Ours vs. Only Pixel L2 Loss). We only have a slight drop
even if we completely remove supervision from action la-
bels of videos (Ours vs. Without Action Label Supervision).
Therefore, our Im2Flow model has the capability to learn
purely from unlabeled video.
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EPE| EPE-Canny EPE-FG | DSt DS-Canny DS-FG | OS{ OS-Canny OS-FG
XYMag Encoding 2.588 2.951 3.230 0.078 0.072 0.070 | 0.671 0.661 0.669
XYZero Encoding [8] | 2.274 2.604 3.016 0.073 0.069 0.061 | 0.668 0.662 0.666
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Table 3. Quantitative results of dense optical flow prediction of different encoding schemes on UCF-101. | lower better, T higher better.
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Figure 1. Examples of how the inferred motion can help static-image action recognition. For each example, the left shows the classification
results of the appearance stream, and the right shows the two-stream results after incorporating the inferred motion.
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