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The supplementary materials consist of:

A. Supplementary video.

B. Details of the recording environment.

C. Details of the recording apparatus.

D. Additional details and observations on the nature of the
hammer impacts in our dataset.

E. Additional results on interpolating from transfer maps.

F. Additional results from measuring the repeatability of
measurements from objects of different materials.

G. Additional details on our simulation baselines and
their assumptions.

H. Additional examples of denoised clips from our
dataset.

I. Example inputs and outputs from our visual acoustic
matching task.

A. Supplementary Video
In the supplementary video, we show 1) a visualization

of the diverse set of objects we use, 2) illustrations and de-
mos of our custom hardware setup and data collection pro-
cess, 3) examples of the impact sound field in our dataset,
and 4) comparisons of audio clips from our dataset against
a series of simulation methods [2, 3, 8].

B. Recording Environment
In order to validate the recording environment and the ef-

ficacy of its acoustic treatments in reducing reverberations,
we measured the room impulse response with the follow-
ing procedure. We positioned a loudspeaker at the same
location of the room at which we had positioned our ob-
jects during our recordings. We then played a ten-second
logarithmic sinusoidal sweep from 20 - 20 kHz through the
loudspeaker and recorded it with the microphone array. The
gantry moved the microphone array through the same posi-
tions at which we had collected the object recordings for the
dataset, and we recorded the sweep from each position. In

62.5 125 250 500 1000 2k 4k 8k 16k
Frequency (Hz)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
T6

0 
D

ec
ay

 T
im

e 
(s

)

Figure 7. Octave-band RT60 measurements made in the measure-
ment room averaged across all 600 microphone locations.

this way, we could capture the specific impulse response at
every potential recording position to ensure there was good
uniformity of the environment and the recordings across all
measurement positions we had used for the dataset. We con-
verted each microphone recording of the sine sweep to an
impulse response using deconvolution, and then calculated
the octave-band reverberation time for the sound to decay
by 60 dB (RT60) using the Schroeder method [6].

The octave band T60 measurements are shown in Fig-
ure 7. The T60 is below 0.2 s for frequencies above 500 Hz,
suggesting that the room is fairly anechoic. Below 500 Hz,
there is a longer reverb time, as we had made a compro-
mise to treat the room down to a reasonable frequency range
while maintaining usable space. With regards to the dataset,
since most objects are small, few will have low-frequency
resonant modes. Most modes are above 500 Hz, the range
in which the room is least reverberant.

C. Recording Apparatus Details
Here we provide more details and explanations of the

mechanical design of our recording apparatus.
Figure 8 shows the motion of the hammer striking mech-
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Figure 8. The automated hammer striking mechanism in action.
(Left) We manually position the head of the impact hammer such
that it is initially near the target impact point without making con-
tact with the object at rest. (Center) To strike the object with the
hammer, the motor first winds back the hammer, until it contacts
the activated electromagnet to be held into place. The motor then
unwinds while the electromagnet holds the hammer. (Right) Fi-
nally, the electromagnet releases the hammer to strike the object
with as little noise from motion as possible.

anism. The hammer is cantilevered to the striking apparatus
by the end of its handle. The handle consists of a light plas-
tic tube with enough elasticity to store spring energy as the
head of the hammer is pulled back to the electromagnet.
Furthermore, because this handle is light, the inertia of the
system is low enough to mitigate the risk of the head of the
hammer bouncing off the object multiple times and pollut-
ing our recordings. To further ensure that we do not capture
multiple hits in our recordings, we also programmatically
validate the recorded signal after each recording.

Our gantry’s motion elements are shown in Figure 9. The
base of the gantry essentially consists of a linear slide rest-
ing on a Vention turntable located at the center of rotation,
with passive fixed caster wheels at the other end. A step-
per motor with a built-in encoder drives the rotation of the
turntable. The stepper motor and encoder system have 800
pulses per rotation, and the turntable has a gearbox with a
10:1 gear ratio, meaning that the gantry can theoretically be
controlled to 0.045◦ precision. However, due to the rated
backlash of the turntable, the nonzero flexibility of the lin-
ear slide and gantry chassis, and the unevenness of the car-
pet in the room, the gantry may settle into a position up to 1◦

from where it has been programmed to be for a recording.
The linear slide is driven by a separate identical stepper mo-
tor and encoder system, with a timing belt moving 150 mm
per rotation. With 800 pulses per rotation from the step-
per motor, this can theoretically be controlled to 0.19mm
precision. The linear slide is more stable at rest and not
as susceptible to the unevenness of the carpet in settling to
a different position when the motors have been turned off.
Because of the flexibility of the column and the mounts of
the microphones, we estimate that effective precision of the
linear motion of the gantry is 1 mm.

Wheels

Turntable Linear Slide

Figure 9. The motion components of the microphone gantry. For
rotational motion, a stepper motor rotates a turntable at the center
of the gantry, while passive wheels support the other end of the
gantry and follow a circular path on the floor. For linear motion,
a separate stepper motor drives a linear slide with a timing belt to
precisely position the column of microphones.

D. Hammer Impacts
Our using a custom apparatus to strike objects with our

steel-tipped impact hammer is important for measuring the
contact forces as well as increasing precision and repeata-
bility. We discuss some other implications of these design
choices.

Impact locations We choose five striking locations for
each object manually, based on multiple trade-offs. First,
we generally choose striking locations which optimize for
coverage of the different salient regions of each object (e.g.,
choosing a location on the handle of a mug as well as on the
side near its lip). Second, we avoid choosing two striking
locations which are symmetric to each other about a plane
or axis of symmetry in the geometry of the object. Third,
we choose points which are reachable by the tip of the ham-
mer, given that the striking apparatus limits the tip’s reach.
And finally, we choose points which eliminate or minimize
the striking apparatus’ occlusion of the line of sight between
the object and any of the microphones.

Impact forces Though the striking apparatus provides a
rather precise and repeatable swinging motion to the ham-
mer, we observe some variation in the striking forces we
measured for each object, object vertex, and even vertex
trial. The hammer’s instantaneous peak striking force is
mostly a function of the hardness and restitution of each
object’s material, ranging from 1.07 to 298 N across the
dataset, with a mean of 109 N across all objects. The aver-
age standard deviation of the peak forces across all vertices
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Figure 10. Comparing the resulting forces and audio of striking the ceramic bowl with different materials of impact hammer tip. The top
row shows the results of using the standard steel tip as we used in our dataset. The bottom row shows the results of using the tip covered
by the soft vinyl cap shown covering the steel tip of the hammer in the image in the bottom row of the left column.

0 0.5 1 1.5 2 2.5 3
Time (s)

0

5000

10000

15000

20000

Fr
eq

ue
nc

y 
(H

z)

60

40

20

0

M
ag

ni
tu

de
 (d

B)

Figure 11. The resulting impulse response estimated by decon-
volving the hammer contact forces from the recording of the steel
tip striking the ceramic bowl shown in Figure 10.

from a single object is 29.8 N, and the average standard de-
viation across all trials of the same vertex is 11.7 N.

Hammer material The impact hammer is comprised of
a plastic handle and a hardened steel tip. The plastic han-
dle emits minimal, but non-negligible, sound as it swings
and strikes objects. The tip of the hammer is small enough
that its modes of vibration all have frequencies above the
Nyquist frequency of our recordings as well as human au-
dible frequencies, thus not directly influencing our impact
recordings. The hardened steel tip of the hammer maxim-
imizes the repeatability of impacts and also ensures that
impacts are as sharp as possible to both excite the high-
frequency modes of each object and make each strike as
loud as possible to boost the signal-to-noise ratio of our
recordings. This in turn allows us to characterize the im-
pulse response as precisely as possible. Using a softer mate-
rial for the hammer creates contacts which are longer, which
essentially low-pass filters the impulse response of the ob-
ject [4], and softer, which decreases the signal-to-noise ratio
of recordings. In order to demonstrate this, we compare the
results of striking the ceramic bowl with the steel tip we
used for our dataset, compared to those of striking the bowl
with the steel tip covered by a soft vinyl cap in Figure 10.
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Figure 12. The result of naı̈vely estimating the sound of strik-
ing the ceramic bowl with the vinyl tip by convolving the impulse
response from Figure 11 with the impact forces of the vinyl tip
shown in the bottom of the middle column in Figure 10.

Note that for the vinyl-capped tip, the duration of the im-
pact force is indeed longer, and its peak magnitude is much
lower. The audio of the impact sound from the vinyl tip is
accordingly much quieter, with much more evident noise in
the spectrogram confirming a lower signal-to-noise ratio.

However, we can use the deconvolved impulse response
from the measurements of impacts using the steel tip to pre-
dict the sounds an object would make under different con-
tact conditions, including being struck by a different ma-
terial. The recording of the steel tip striking the ceramic
bowl shown in the top row of Figure 10 yields the decon-
volved impulse response shown in Figure 11. We can then
convolve this impulse response with new hammer contact
forces to make a naı̈ve prediction of the sound the object
would make when acted upon by those contact forces. For
example, we can use this principle to predict the sound of
the ceramic bowl being struck by the soft vinyl tip. We
convolve the deconvolved impulse response from the steel
tip with the contact forces from the vinyl tip, with the result
shown in Figure 12. When compared to the ground truth au-
dio recorded from the impact of the vinyl tip (shown in the
spectrogram at the bottom right of Figure 10), the prediction
shows a modal response with very similar characteristics to



Figure 13. Comparing ground truth measurements versus interpolated mode shape transfer maps of the nine most salient modes of a ceramic
bowl. (Left) Ground truth measurements, measured at an azimuth angle resolution of 1◦. (Right) The results of linearly interpolating a 1◦

azimuth resolution from the 20◦ resolution measurements used in our data collection process.
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Figure 14. Comparing different interpolation methods for their
error in interpolating 1◦ transfer maps of the ceramic bowl from
different levels of azimuth angle coarseness, averaged across the
bowl’s nine most salient modes.

that of the ground truth, yet markedly different from the
modal response of the steel tip at the top left of Figure 10.
Further, by using the impulse response from the steel tip
with a much higher signal-to-noise ratio, the prediction is
less polluted by measurement noise than the actual ground
truth recording.

E. Interpolating from Transfer Maps
Here we show some results from attempting to naı̈vely

interpolate high-resolution mode shape transfer maps from
lower-resolution maps. First, in addition to those already
shown in Figure 4, the ground-truth high-resolution transfer
maps from salient modes of the ceramic bowl are shown on
left side of Figure 13. These additional transfer maps have
also been collected by the same procedure described in § 4.5
and processed by the procedure described in § 4.4.
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Figure 15. Error of linear interpolation toward estimating transfer
maps of 1◦ azimuth resolution from the ceramic bowl at each mode
frequency, stratified by the coarseness of azimuth angle resolution
on which each interpolation is based.

We downsample each of these maps to increasingly
coarse azimuth angle resolutions and attempt to interpolate
back to 1◦ azimuth resolution using linear, cubic, and quin-
tic interpolation methods, then measure the RMSE in deci-
bels of each method at each coarseness of resolution. We
average the error of each method across the mode transfer
maps of each the nine frequencies and show the results in
Figure 14. A simple linear interpolation outperforms the
cubic and quintic interpolations at every level of coarse-
ness. Figure 15 shows the error of linear interpolation from
each coarseness of azimuth angle resolution, with separate
error for each mode frequency. The mode shape transfer
maps from the 13389, 15550, and 21234 Hz modes suffer
the highest errors as the coarseness of sampling increases.
As seen on the left of Figure 13, the transfer maps for each
of these modes have especially high frequency of repeti-
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Figure 16. Measuring repeatability of our measurements by visualizing transfer maps of vibrational frequencies of the objects of different
materials, measured at 23 cm from the center of each object. The top row of transfer maps for each object shows the mean of 10 trials of
measurements of striking the same vertex on the object, while the bottom shows the relative standard deviation of the 10 trials.

tion of their nodes with respect to azimuth angle. Increas-
ing the coarseness of the spatial sampling resolution beyond
the Nyquist frequencies of each of these patterns is bound
to expand the error of interpolation.

As described in § 4.3, our dataset provides sound fields
measured at 20◦ azimuth angle resolution. To demonstrate
the challenges of using our dataset to interpolate a sound
field, we show the results of linearly interpolating 1◦ az-
imuth resolution transfer maps of the ceramic bowl from
20◦ transfer maps on the right side of Figure 13. These re-
sults reflect that a naı̈ve interpolation, without any domain-
specific model bias or priors, will be prone to high er-
rors when trying to interpolate sound fields from the az-
imuth resolutions at which we have sampled them from our
dataset. This motivates future work which is able to use pri-
ors to fit high-resolution sound fields from the spatial reso-
lution of the sound fields in our dataset, or perhaps interpo-
late from an even more minimal amount of measurements.

F. Additional Repeatability Results

Along with measuring the repeatability of the ceramic

bowl (Figure 5), we measured the repeatability of an object
from each of the six additional materials according to the
same procedure described in § 4.5, conducting 10 trials of
our measurements striking a single vertex on each object.
We show the mean and standard deviations of the transfers
we measured at some sample modal vibrational frequencies
for each object in Figures 16.

G. Baseline Details and Assumptions
As stated in § 5.1, each baseline we evaluated used dif-

ferent assumptions and techniques for simulating sounds.
Additional details of the differences in assumptions and
methods are detailed below and summarized in Table 4.

Baseline Modal Models Each baseline estimates the
structural vibrations of objects through finite element-based
modal analysis. NEURALSOUND computes modal analy-
sis by voxelizing objects into hexahedral meshes, whereas
KLEINPAT and ObjectFolder tetrahedralize objects to cap-
ture fine geometric features. Both NEURALSOUND and
KLEINPAT use first order mesh elements, while Object-
Folder uses second order tetrahedra to model the curva-



KLEINPAT [8] NEURALSOUND [3] OBJECTFOLDER 2.0 [2]

Modal Analysis & Model

Finite Element Shape Tetrahedral Hexahedral Tetrahedral

Finite Element Order First First Second

Inference Precomputed Table LOBPCG Optimization Implicit Neural Representationw/ Neural Warm Start
Acoustic Transfer Model

Ground Truth Source Boundary Element Method Boundary Element Method N/A
Inference Precomputed FFAT Map Neurally Predicted FFAT Map N/A

Table 4. Comparing assumptions and methods of each baseline model.

ture of finite elements during modal vibrations At inference
time, KLEINPAT estimates the vibrations of the object by
directly computing a modal response from the frequencies
and gains (i.e., displacements for each mode shape) at each
vertex of the mesh from the results of the LU decomposi-
tion. NEURALSOUND trains a sparse U-Net to output vec-
tors which are used as input to the Rayleigh-Ritz method
to approximate eigenvalues and eigenvectors. At inference
time, the approximated eigenvalues and eigenvectors are
quickly optimized using a Locally Optimal Block Precon-
ditioned Conjugate Gradient (LOBPCG) optimization to ar-
rive at the final eigenvalue and eigenvector estimates. Ob-
jectFolder uses the eigenvectors estimated by Abaqus [7] to
train an implicit neural representation to estimate the modal
gains at any contact point on the object. At inference time,
the modal response is constructed by using the frequencies
estimated by Abaqus and gains predicted by the implicit
representation. All baselines use the Rayleigh damping
method for estimating the dampings of each mode, based
on the same parameters for each material.

Baseline Acoustic Transfer Models While ObjectFolder
does not model acoustic transfer, KLEINPAT and NEU-
RALSOUND each use different methods for estimating
the acoustic transfer of each object. KLEINPAT precom-
putes Far-Field Acoustic Transfer (FFAT) maps from per-
forming mode conflation and computing transfer using a
finite-difference time-domain (FDTD) wavesolver. NEU-
RALSOUND computes FFAT maps using a Boundary Ele-
ment Method (BEM) solver and uses these maps to train
a ResNet-like encoder-decoder network to predict FFAT
maps for each mode, using the objects’ mesh and the mode
frequency as input. At inference time, KLEINPAT merely
uses its precomputed FFAT maps of each mode of an ob-
ject, while NEURALSOUND uses its network to predict the
FFAT maps to estimate acoustic transfer of each mode.

RealImpact Denoised

Figure 17. Example spectrograms from REALIMPACT’s raw de-
convolved recordings compared to their denoised counterparts, for
objects of different materials.

H. Additional Denoising Examples
Additional example spectrograms of REALIMPACT’s

recordings compared to their denoised versions, produced
by the algorithm of [5] are shown in Figure 17. The denois-
ing algorithm seems to be especially helpful in removing the



low frequency noise for each object. This is especially evi-
dent in the recordings for the ceramic bowl, the glass plate,
and the wood plate.

However, while filtering out noise, the algorithm also
seems to filter out some important signal. The algorithm
filters out modes after they have partially decayed, increas-
ing their effective decay rate. Note in Figure 17 that the
modal vibrations of the iron skillet and especially the steel
spoon are shortened significantly in their duration by this
algorithm. By effectively accelerating the decay of these
modes, characterizing the objects’ vibrations from these de-
noised versions could lead to overestimates of the damp-
ing properties of the objects and their materials. This moti-
vates future work for an efficient denoising algorithm which
is specialized for impact sounds, perhaps inspired by the
physics-based principles of modal vibrations, similar to the
denoising technique presented in [1].

I. Visual Matching Examples
Plastic Bowl

        Audio Spectrogram                     GT Matching Image        Nonmatching Image

Figure 18. Example success (top two rows) and failure (bottom
two rows) cases of our model for the visual acoustic matching task
on a plastic mixing bowl.

Figures 18 - 20 show a random selection of examples of
two success and two failures for three different objects in
the visual acoustic matching task described in § 5.2 of the
main manuscript.

For the results of the wooden wine glass shown in Fig-
ure 19, in the success cases, the different position and angle
of the hammer stand and object lead to greater visual con-
trast between the correct matching and nonmatching images
in each pair. In both failure cases, the images in each pair

Wood Wine Glass

        Audio Spectrogram                     GT Matching Image        Nonmatching Image

Figure 19. Example success (top two rows) and failure (bottom
two rows) cases of our model for the visual acoustic matching task
on a wood wine glass. Ceramic Large Swan

        Audio Spectrogram                     GT Matching Image        Nonmatching Image

Figure 20. Example success (top two rows) and failure (bottom
two rows) cases of our model for the visual matching task on a
decorative ceramic swan.

appear to be more visually similar to each other. The ham-
mer stand and object are located and angled in similar po-
sitions. This contrast in visual similarities and differences
between success and failure cases is also evident in the re-



sults from the other objects. One important confounding
factor is that the model could be exploiting and learning
from the visual differences in the room. Each image also
captures background details of the recording apparatus and
recording room, such as the microphone stand position and
patterns in the acoustic padding. It is unclear if the model
is learning from the positions of the object and hammer or
from other environmental factors in the room. In real-world
settings, such external factors may be especially wise to ex-
ploit, since they are also likely to influence the acoustic en-
vironment of the object and therefore its sound field.
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