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Problem

Status quo: Learning from “bags of labeled images”

v Expensive

v Limited data

v Task-specific

v Not scalable

Solution: Learning unsupervised generic features from

unlabeled videos

v Free

v Unlimited

v Generic

Learning from Temporal Coherence

Slow Feature Analysis (SFA):
video frames change slowly over time

Supervision Signal for Feature Learning: Temporally

close frames should be close in the deep feature space

… …

Current Work:
v Holistic image embedding: multiple layers of changes

across different regions [Goroshin 2015, Ramanathan 2015,

Jayaraman 2016, Mobahi 2009, Bengio 2009, …]

v Tracking: error-prone, biased to moving objects and

inefficient [Wang 2015, Zou 2011, Zou 2012]

Temporally Coherent Region Proposals
Our idea: region proposals of temporally close video 

frames can provide supervision 

Region Proposals Selective Search [Uijlings 2013]

… …

Advantages:
v capture both static objects and moving objects

v object-like regions are informative

v >100 times faster than tracking algorithms

Region Proposal Pair Generation:

IoU > 0.5

aspect ratio < 1.5
width, height > 227

Top N

Region 
Proposals

Region
Proposal

Pair

Video
Frame
Pair

Examples of Region Proposal Pairs:
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Framework
Our Framework: Temporally close region proposals should

be close in the deep feature space
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Enbedding Space
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Triplet Embedding: two spatio-temporally close region 

proposals should be embedded closer than a random 

region proposal from another different video
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Evaluation Results
Data: 25,000 unlabeled videos of various categories from 

YouTube retrieved based on keywords from VOC

Nearest Neighbor Results: far superior to random AlexNet,

and comparable to ImageNet AlexNet

Query (a) Our Unsupervised CNN (b) Random AlexNet (c) ImageNet AlexNet

Unsupervised Recognition Results:

Fine-tuning Recognition Results:

Our pre-trained model is available on our project page:
vision.cs.utexas.edu/projects/object_centric_unsup/


