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Abstract—The seminal works by Karger [12], [13] have shown
that one can use Uniform Random Edge (URE) sampling to
generate a graph skeleton which accurately approximates all
cut-values in the original graph with high probability under
some specific assumptions. As such, the random subgraphs
resulted from URE sampling can often be used as substitutes
for the original graphs in cut/flow-related graph-optimization
problems [13]. In this paper, we extend the results of Karger
to show that, besides the value (weight) of the cut-set, the
weights of four additional types of edge-set, namely, Volume,
Association, Complement Volume and Complement Association,
are all well-preserved under URE sampling. More importantly,
we show that these well-preserved edge-set metrics have dominant
impact on the outcome of common graph-mining tasks including
PageRank computation and Community Detection. As a result,
URE sampling can be used to accelerate the corresponding
graph-mining algorithms with small approximation errors. Via
extensive experiments with large-scale graphs in practice, we
demonstrate that URE sampling can achieve over 90% accuracy
for PageRank computation and Modularity-based Community
Detection by sampling only 20% edges of the original graph.

Index Terms—URE sampling, graph property preservation,
PageRank, Community Detection

I. INTRODUCTION

The ever-increasing popularity of Online Social Networks
(OSNs) such as Facebook, Twitter, and LinkedIn has drawn
a lot of attentions from researchers in recent years. Not only
do these OSNs provide people with a platform to socialize,
they also create ample valuable information for data mining.
By applying various graph mining algorithms on these social
networks, we can gain several useful insights and business
intelligence. However, due to the explosive growth of the
scale of OSNs in the recent years, a typical social network
graph associated with these platforms easily have millions or
even billions of vertices and edges. It has therefore become
practically infeasible to conduct standard graph mining tasks
on the original graph directly. As a result, various graph
sampling techniques have been proposed for the analysis
or mining of large-scale complex networks. Under such an
approach, only a small subset of the nodes and/or edges from
the original graph are selected to form a subgraph for further
processing.

The value of any particular graph sampling scheme is
heavily contingent on its ability to preserve relevant properties
and metrics of the original graph, which may have dominant
impact on the outcome of the corresponding graph mining
algorithms. Take any Max-Flow Min-Cut algorithm as an

example where the objective is to find a cut-set with minimum
weight in the original graph. Here, the “total weight of a cut”
can be viewed as the key graph property of interest. As long
as this property can be well-preserved upon graph sampling,
the result produced from the sampled graph should serve as
a good approximated solution for the original graph. A key
advantage of the sampled graph compared to the original one
is that the former has far fewer edges (and/or vertices) and
thus the graph mining algorithms can run much faster on it.
Of course, the graph sampling scheme itself must be light-
weight and efficient in order to yield overall computational
savings when compared to the case without sampling.

The seminal results by David Karger [12], [13] establish
a theoretical guarantee for preserving the cut-values of a
graph via Uniform Random Edge (URE) sampling under a
relatively strong condition, namely, the minimum node-degree
of the original graph should be no less than Ω(lnn) where
n is the number of nodes before sampling. In this paper,
we extend Karger’s result to derive a more general graph-
property-preservation framework. More specifically, we show
that the weights of other four types of edge-set, namely,
Volume, Association, Complement Volume and Complement
Association, are also preserved under URE sampling if the
same condition holds. Moreover, URE sampling also leads
to the preservation of some other graph-theoretic properties
including Ratio Cut, Normalized Cut, Ratio Association, and
Normalized Association.

One major drawback of Karger’s result is that real-world
social graphs often cannot satisfy its required condition on
minimum node-degree. Nevertheless, we will demonstrate via
experiments that relavant properties and metrics can still be
preserved after graph sampling. More importantly, we inves-
tigate two common graphs mining tasks, namely, PageRank
computation and Community Detection on various real-world
graphs. Our results show that, via URE-sampling, these graph
mining tasks can yield well-approximated solutions for the
original graph with substantial reduction in computation time
when compared with the case of no sampling. In summary,
we have made the following technical contributions:
• After reviewing the related work in Section III, we extend

Karger’s result on cut to other four edge-set metrics under
URE sampling in Section III and provide a theoretical
guarantee for graph property preservation as well.

• In Section IV, we conduct extensive experiments to
quantify the extent of graph property preservation when



URE sampling is applied to large-scale social graphs in
practice.

• Before concluding our work in Section VI, we, in
Section V, apply URE-sampling on two graph mining
tasks including PageRank computation and Community
Detection to demonstrate its effectiveness in speeding
up the corresponding algorithms while maintaining an
acceptable level of accuracy.

II. RELATED WORK

Researchers have proposed a lot of graph sampling algo-
rithms in the literature. Hu et al. provide a comprehensive
review for the related work in [10]. In particular, Uniform
Random Edge Sampling (URE) has been extensively studied.
URE Sampling scans parts or full of a whole graph and takes
each scanned edge into the sampled graph with a constant
probability. On the other hand, Non-Uniform Random Edge
Sampling (NURE) samples edges with different probabilities.
Edges with sparser connectivities are usually sampled with
higher probabilities [4], [5], [9], [14]. In general, NURE
Sampling can lead to a good representative of the original
graph but it takes a much longer time than URE approach
to obtain a sampled graph. For example, the Benczur-Karger
algorithm takes O(m log2 n) time to construct a sampled graph
when the original graph is unweighted and takes O(m log3 n)
time when the original graph is weighted [4]. As a comparison,
URE Sampling takes at most O(m) time to construct a desired
graph.

Our work focuses on graph property preservation, which
is one of the most common graph sampling objectives. The
concept of property preservation under large-scale graph sam-
pling was first introduced by Leskovec and Faloutsos in
[17]. They test a number of different sampling methods to
assess the ability of these algorithms on preserving some
important properties of the original network such as clustering
coefficient, degree distribution, the distribution of component
size, etc. They observe that different graph sampling algo-
rithms are better at preserving some specific graph properties
but not others, and that there does not exist one particular
algorithm that can outperform all other sampling algorithms
in all aspects.

Since different post-sampling applications rely on graph
properties in different ways, graph sampling procedures are
often tailored to specific applications. For example, Jia et
al. propose several novel graph sampling methods in [11] to
get a sampled graph for better visualization of large-scale
power-law graphs; Krishnamurthy et al. develop methods to
sample a small realistic graph from a huge Internet topology
for the purpose of efficient simulation [16]; Ahmed et al.
investigate the impact of network sampling on estimates of
relational classification performance [3]; Chakrabarti et al.
present algorithms in [8] to generate subgraphs that well
preserve pairwise relationships, which are vital for applications
like clustering, classification, and ranking; some other works
propose to employ graph sampling approaches to address
community detection problems including [19], [26] and [27].

Recently, Zhao et al. propose a novel method to derive
an auxiliary graph and an affiliation graph in [28] to help
the graph mining process of the original target graph. With
the existence of the auxiliary graph and affiliation graph,
the unbiased estimation of certain graph characteristics can
be conducted efficiently. Wang et al. present Uniform Vertex
Sampling and Random Walk techniques to characterize user
pair properties including neighboring pairs and two-hop pairs
in [21], [24]. Moreover, the sampling techniques in [21], [24]
are asymptotically unbiased.

Our contributions in this paper differ from the existing
works on several fronts. Firstly, many existing graph sampling
algorithms are overly complicated, which contradicts our goal
of leveraging graph sampling to accelerate graph mining tasks.
For example, Benczur et al. propose to preserve minimum
cuts via NURE Sampling in [4], which can get rid of the
strong condition in the original method with URE Sampling.
However, the NURE Sampling process alone is very time-
consuming as it needs to compute the connectivity of each
edge. Secondly, in terms of the application of graph sampling
to the problem of community detection, our approach is more
general than those proposed by [19], [26] and [27] as we adopt
URE sampling as a preprocessing step which is applicable to
any community detection algorithm. Thirdly, our work extends
the scope of Karger’s theoretical guarantee [12], [13] and
broaden its applications beyond max-flow/min-cut problems
to cover additional graph analysis/mining tasks.

III. GRAPH PROPERTIES PRESERVATION VIA URE
SAMPLING

In this section, we mainly present the edge-set metrics
extended from the cut-set and show the theoretical results for
graph property preservation under URE sampling.

A. Definitions and Preliminaries

In this paper, we focus on the social network with undirected
relationships and model it as a graph G = (V,E), where V =
{v1, v2, . . . , vn} is the vertex set and E = {e1, e2, . . . , em}
is the edge-set. To facilitate discussions in the subsequent
sections, we first define the following concepts and notations:

Definition 1. Given an undirected graph G = (V,E), the
weight of an arbitrary subset of edges F ⊆ V × V is defined
as

w(F ) =
∑
e∈F

w(e)

where w(e) is the weight of a single edge. For those edges
e /∈ E, we let w(e) = 0. For an unweighted graph, we let
w(e) = 1,∀e ∈ E.

Definition 2. Given an undirected graph G = (V,E), we
extend the cut-set to yield the following 5 types of edge-set
where S is a subset of V and S̄ = V − S.
• Volume: v(S) = {(u, v) ∈ E|u ∈ S} = {(u, v)|u ∈
S} ∩ E

• Association: ρ(S) = {(u, v) ∈ E|u ∈ S, v ∈ S} =
{(u, v)|u ∈ S, v ∈ S} ∩ E
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Figure 1: Uniform Random Edge Sampling

• Cut: δ(S) = {(u, v) ∈ E|u ∈ S, v ∈ S̄} = {(u, v)|u ∈
S, v ∈ S̄} ∩ E

• Complement Volume: v̄(S) = {(u, v) ∈ E|u ∈ S̄} =
{(u, v)|u ∈ S̄} ∩ E

• Complement Association: ρ̄(S) = {(u, v) ∈ E|u ∈
S̄, v ∈ S̄} = {(u, v)|u ∈ S̄, v ∈ S̄} ∩ E

For an undirected graph G = (V,E), denote by Gs =
(Vs, Es) the sampled graph obtained from graph sampling.
As an illustrative example, Fig. 1 shows the whole process of
URE sampling. It first selects all the nodes (i.e., Vs = V ) and
samples a set of edges Es from E uniformly at random with
certain probability p. Suppose the weight of each edge in the
original graph is 1, it then sets the weight of each edge in
Gs to 1/p. The resultant graph is the desired sample of the
original graph from URE sampling.

B. Property Preservation under URE Sampling

Applying the same approach from Karger’s work, we prove
in this section that, for all of the five types of edge-set defined
in the previous subsection, their weights (See Definition 1)
can be well preserved under URE sampling. To establish this
result, we first prove the following theorem, which provides
an upper bound for the number of edge-sets with specific
constraints. In the following description, when we talk about
the metric preservation for these five types of edge-set, we
refer to the preservation of their weights.

Theorem 1. Given an undirected graph G = (V,E), the
number of different edge-sets with |F | ≤ αc for each type
is less than n2α, where c is the minimum node-degree in G.

Combine the result in Theorem 1 and apply the same
approach in [12], the following theorem immediately follows:

Theorem 2. Given an undirected graph G = (V,E), let n be
the number of vertices in the graph and c = Ω(lnn) be the
minimum node-degree. We sample edges of G with probability
p = 3(d+2) lnn

ε2c (d is a positive number) independently and set
their weights in Gs as the original multiplied by 1/p. Then
Gs is an ε-approximation of G under all of the five types
of edge-set metrics. More precisely, if we denote by FG and
FGs

a particular edge-set in the original graph G and the
corresponding sampled graph Gs respectively, then for any
FG with |FG| ≥ c, the following inequality holds with a high
probability:

(1− ε)w(FG) ≤ w(FGs) ≤ (1 + ε)w(FG) (1)

C. Property Extension

Based on the definition of the five types of edge-set and
Theorem 2, we can further extend the above preservation re-

Table I: Information of Different Datasets

Name Nodes Edges Minimum Degree
BlogCatalog 10,312 333,983 1
loc-Gowalla 196,591 950,327 1

Flickr 80,513 5,899,882 2
Friendster 5,689,498 14,067,887 1

ego-Facebook 4,039 88,234

sults to the following four graph-theoretic properties associated
with any subset of nodes, say S, of a graph:
• Ratio Cut [25]: Rcut(S) = |δ(S)|

|S|
• Ratio Association [23]: Rassoc(S) = |ρ(S)|

|S|
• Normalized Cut [23]: Ncut(S) = |δ(S)|

|v(S)|
• Normalized Association [23]: Nassoc(S) = |ρ(S)|

|v(S)|

Theorem 3. Given an undirected graph G = (V,E), let n
be the number of vertices in the graph and c = Ω(lnn) be
the minimum degree of vertices. We sample edges of G with
probability p = 3(d+2) lnn

ε2c independently and set their weights
in Gs as the original multiplied by 1/p. Then Gs is an ε-
approximation of G in terms of Ratio Cut, Ratio Association
and a 4ε-approximation of G in terms of Normalized Cut,
Normalized Association.

IV. EXPERIMENTAL EVALUATION

In this section, we present experimental results to evaluate
the validity of our theoretical results in Section III when apply-
ing URE sampling on large-scale real-world social graphs in
which the minimum node-degree requirement is not satisfied.

A. Dataset

We conducted our evaluation using four real world datasets
obtained from the Stanford Large Network Dataset Collection1

and the Social Computing Data Repository of Arizona State
University2. The statistics of the datasets are shown in Table
I.

B. Preservation of edge-set metrics indexed by a randomly
generated vertex set

We randomly select a subset of vertices within a given
social graph to check whether the metrics of the five types
of edge-set (per Definition 2) for this particular vertex subset
are well preserved in the URE-sampled graph. We use the
Normalized Root Mean Square Error (NRMSE) as the metric
to evaluate the extent of graph property preservation. In
particular, NRMSE quantifies the relative error of an estimator
θ̂ with respect to its true value θ and it is defined as:

NRMSE(θ̂) =

√
E[(θ̂ − θ)2]

θ
. (2)

When θ̂ is an unbiased estimator of θ, E[θ̂] = θ,
NRMSE(θ̂) = std(θ̂)/θ. In each of our experiment, the
empirical NRMSE values are obtained by averaging over 100
different runs.

1http://snap.stanford.edu/data/
2http://socialcomputing.asu.edu/pages/datasets



In Fig. 2a, we show the results of NRMSE at different
sampling rate (fraction) for the loc-Gowalla dataset. Observe
that the weights of all of the five types of edge-set are
well preserved. The NRMSE for these five metrics already
approaches a small value of around 0.01 for edge sampling
rate as low as 1 percent. The values are all below 0.01 and
approach 0.005 if over 10 percent of edges are sampled from
the original graph. The difference between the five edge-set
metrics in the sampled graph and that of the original graph
continuously decreases with the increasing sampling size.
Therefore, the weights of the five edge-sets indexed by this
particular randomly generated vertex set are well preserved.
The experimental results of the other three datasets are very
similar, so we have not included them here due to space limit.

C. Preservation of all edge-set metrics under URE sampling
In this subsection, we evaluate the applicability of Theorem

2 in a real-world graph setting when its required condition may
not be satisified and show that all the five types of edge-set
metrics are still well preserved under URE sampling. Given
a graph with n vertices, there are 2n−1 edge-sets defined for
each type. It is computationally infeasible to enumerate all
the possible edge-sets and check their preservation for the
massive graphs in our dataset. Instead, we uniformly choose
500 edge-sets at random from the pool of a particular type
and check the property preservation results of the 500 chosen
edge-sets. Following the proof of Theorem 2, the probability
that there exists one among the 500 chosen edge-sets such that
the weight cannot be bounded by Inequality (1) is less than
4
dn
−d · 10002n . For n ≥ 1000, this number is close to zero.

We compare the weight of every edge-set in the sampled
graph and that of the original graph to calculate the deviation,
namely the value of ε in Theorem 2. More precisely,

ε =
|w(FG)− w(FGs

)|
w(FG)

. (3)

We then take the average of the deviations over the 500 edge-
set metrics to get the average deviation. Fig. 2b depicts the
results of the average deviation at different sampling fraction
for the loc-Gowalla graph. Similar results can obtained as in
the last subsection. The 500 edge-sets as a whole are already
quite well preserved at sampling fraction as low as 1 percent.
This is a good indication of the preservation of all edge-set
metrics under URE sampling. The experimental results of the
other three massive graphs in datasets are very similar as well.

D. Preservation of the four graph-theoretic properties ex-
tended from edge-set metrics

In order to demonstrate the validity of Theorem 3 in large-
scale graphs in practice, we also present the experimental
results for the other four graph-theoretic properties introduced
in Section III-C. Fig. 3 depicts the results for the loc-Gowalla
graph. Notice that they are also well preserved under URE
sampling. The values of NRMSE and average deviation are all
around 0.01 at sampling rate as low as 1 percent. Still, similar
results can be obtained for the other three social graphs in our
dataset.
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Figure 2: Preservation results of five edge-set metrics for loc-
Gowalla Dataset
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Figure 3: Preservation results of four graph-theoretic properties
extended from edge-set metrics for loc-Gowalla Dataset

V. ACCELERATING GRAPH MINING ALGORITHMS VIA URE
SAMPLING

The previous section directly evaluates our extended version
of theorems. In this section, we demonstrate how to make
use of URE sampling to accelerate common graph mining
algorithms, which is the ultimate objective of our work.
All algorithms under tested are implemented in Python and
executed on a 64-bit Linux server with eight 3.4GHz Intel
Core i7 processors and a total of 16 GB RAM.

A. PageRank

PageRank is a popular algorithm used to measure the
relative importance of nodes in a graph and the purpose of
using PageRank is mainly to get those top ranking nodes.
Given an undirected graph G = (V,E) and a vertex v, the
PageRank score r(v) of vertex v is defined as:

r(v) = (1− ε)
∑

(u,v)∈E

r(u)

d(u)
+

ε

|V |
, (4)

where d(u) denotes the degree of node u and ε denotes
the probability of random jump (aka. damping factor). The
larger score a vertex has, the higher the vertex ranks and is
considered more important. PageRank works by counting the
number and quality of links (edges) to a vertex to determine
a rough estimate of how important the vertex is. Since URE
sampling well preserves all five types of edge-set metrics, the
relative importance of vertices should also be well preserved.
That is, if a vertex receives many links and connects to more
important vertices in the original graph, it should still receive
more important links relative to other vertices in the sampled
graph.
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Figure 4: The PageRank scores of the top 100 and 1000
ranking nodes of the original graph and the sampled graph
(under the sampling fraction of 20% ) for BlogCatalog Dataset

In this subsection, we study the acceleration of the PageR-
ank algorithm through URE sampling. When the original graph
is very large, it is time-consuming to execute the PageRank
algorithm on the original graph directly. If similar ranking
results can be obtained from the sampled graph, the computa-
tion time can be substantially shortened. We execute the same
PageRank algorithm on the original graph and the sampled
graph with a damping factor of 0.15 (the value commonly
used in the literature) to compare the results.

The evaluation on the performance of a ranking model
is usually carried out by comparing the ranking lists output
by the model and the ranking lists given as the ground
truth. In our case, the ranking lists obtained by executing the
PageRank algorithm on the original graph serve as the ground
truth. We illustrate the PageRank scores of top 100 and 1000
ranking nodes from the ground truth of the original graph
and the sampled graph (under the sampling rate of 20%) for
BlogCatalog Dataset in Fig. 4a and Fig. 4b respectively. It
indicates that the PageRank scores of the nodes in the sampled
graph do not vary much from those in the original graph.

Here, we use Mean Average Precision (MAP) to further
quantify the accuracy of URE sampling in computing the
PageRank scores. MAP is one of the main measures used in
TREC [1] and has been shown to be a stable, effective metric
[7]. We consider the top 100 nodes in the original graph as
important nodes. In MAP, it is assumed that the grades of
importance are at two levels: 1 and 0. And the top-100 ranked
nodes have a grade of importance of 1. For a given sampling
rate (fraction), we execute the same PageRank algorithm on
the sampled graph Gs to produce a ranking list of the top
100 nodes π = {n1, n2, . . . , n100}. The Average Precision for
each run is defined as:

AP =

∑100
j=1 P (j) · yj∑100

j=1 yj
, (5)

where yj is the label of node nj which takes on 1 or 0 as the
value, corresponding to the case where a node is important or
not. P (j) is defined as:

P (j) =

∑
k:π(k)≤π(j) yk

π(j)
, (6)

where π(j) is the position of node nj in the ranking list π.
Since labels are either of value 1 or 0, ‘precision’ can be
defined. The Average Precision represents averaged precision
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(d) Friendster

Figure 5: PageRank Algorithm running on four different
datasets

over all the positions of nodes with a labelled value of 1. For
each sampling rate, the Average Precision values are averaged
over 100 runs of the PageRank computation to obtain the Mean
Average Precision (MAP).

In Fig. 5, we present the experimental results for the four
real-world social graphs. Observe that MAP almost reaches
0.9 for the BlogCatalog graph and about 0.8 for loc-Gowalla
and Flickr ones respectively when sampling at a rate of as
low as 10 percent. For the larger graph of Friendster, MAP
also approaches 0.8 at a sampling rate of 20 percent. The
computation time for low sampling rate are several times
smaller than that for the original graphs. We therefore conclude
that, if the purpose of computing PageRank for a graph is to
identify and order the top-ranked nodes, it is acceptable to just
execute the PageRank algorithm on the URE-sampled graph.

B. Community Detection

Community detection algorithms are heavily used in OSNs
to support many of their core services, such as timeline
personalization and friend recommendation. These services all
require fast discovery of communities. For such applications,
speed is much more important than marginal improvement of
the quality of community detection results.

On one hand, the preservation of all five types of edge-
set metrics will lead to the preservation of densely connected
groups. On the other, the relative important group/community
structure remains although the number of connections in each
group decreases after graph sampling. Therefore, we can nat-
urally predict that we should get similar community detection
results by running the community detection algorithms on the
sampled graph.

Label Propagation [22] is one of the state-of-the-art com-
munity detection algorithms. In this algorithm, every node is
initialized with a unique label and at every step each node
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(b) Louvain Method

Figure 6: Performance of URE-based Community Detec-
tion using normalized modularity as the metric. (Results are
normalized w.r.t. the modularity value (0.8137 and 0.8339
respectively) of the resultant partition of the LP and Louvain
algorithms without sampling.)

adopts the label that most of its neighbors currently have.
In this iterative process, densely connected groups of nodes
form a consensus on a unique label to form communities.
Louvain method [6] is another state-of-the-art algorithm for
community detection and it has been widely used by indus-
trial practitioners in large scale networks. This method is a
greedy optimization approach that attempts to maximize the
modularity of a partition of the network.

Modularity is a classical metric to quantify the quality of the
results produced by different community detection algorithms
under studied [20]. Here we use Modularity to measure
the difference in the quality of the results of a community
detection algorithm when it is applied to the URE-sampled
version of graph instead of the original one. We adopt the
definition of Modularity as presented in [2]. In particular, let
C = {C1, C2, . . . , Cn} be a partition of the graph G = (V,E)
s.t. Ci∩Cj = ∅ and C1∪C2 . . .∪Cn = V . Then the modularity
of the whole graph given C can be expressed as:

Q(C) =
1

2m

∑
C∈C

∑
u∈C,v∈C

(
Au,v −

dudv
2m

)
, (7)

where du, dv denote the degrees of nodes u and v, A is the
adjacency matrix of G (Au,v = 1 if u and v share an edge and
Au,v = 0 otherwise). The term dudv

2m computes the expected
number of edges between u, v on a Fixed Degree Distribution
Random Graph. Thus, for each cluster, it computes the devia-
tion of observed graph from a random graph. If a set of vertices
has closer relationships, its modularity should be larger. The
summation of modularity values of all sets (communities) is
a good indicator of the performance of the corresponding
community detection algorithm. The normalization by a factor
of 1/2m makes modularity a number from interval [-1,1].

Here, we use the “ego-Facebook” graph [18], which is of
good community structure contained, from the Stanford Large
Network Dataset Collection to demonstrate the acceleration of
the Label Propagation (LP) and Louvain Community Detection
algorithms. We execute both of the aforementioned community
detection algorithms on the sampled graphs under different
sampling rate to obtain the partition (communities) outcome.
After that, we use the resultant community-membership of

the nodes to partition the original graph and compute the
corresponding Modularity values under different algorithms.

Fig. 6 shows the results of performing community detection
for the URE-sampled ego-Facebook graph. Note that the
modularity value in the y-axes is further normalized w.r.t.
the modularity obtained by running the same community
detection algorithm over the original graph without sampling
(i.e. sampling rate = 1). Observe that, by applying an edge
sampling rate as low as 10% for both of the community
detection algorithms, the modularity of the resultant partition
computed based on the sampled graph is already very close to
its counterpart value in the non-sampling case. It is noteworthy
that the running time for each sampled case is almost less than
1/2 of that of the non-sampling cases.

VI. CONCLUSION

This work is a attempt to use Uniform Random Edge
(URE) sampling to accelerate graph mining algorithms, which
including PageRank Computation and Community Detection.
Our primary contribution is to extend Karger’s results on
preservation of cut-value to other four types of edge-set
metrics, and show the theoretical performance bounds as well.
We also explain why the preservation of these edge-set metrics
are useful for the graph mining algorithms via extensive
simulations. Extensions of this work to other graph properties
and graph mining algorithms, are likely next steps towards
efficient large-scale graph computation.
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APPENDIX

A. Proof of Theorem 1

Proof. Repeat the same contraction process as in [15], the
survival probability of each edge-set with |F | ≤ αc is at
least n−2α. Applying the union bound, the result immediately
follows.

B. Proof of Theorem 2

In Theorem 2, we have proved that Gs is an ε-approximation
of G for the edge-set metrics defined in Definition 2. Based
on the extended properties, we have, Rcut(S) = |δ(S)|

|S| and

Rassoc(S) = |ρ(S)|
|S| . Multiplying Inequality (1) by 1

|S| , we
can directly show that Gs is also an ε-approximation of G in
terms of Ratio Cut and Ratio Association. For Normalized Cut
and Normalized Association, we prove the results by applying
the following lemma:

Lemma 1. Suppose 0 < ε < 1
2 , the inequalities (1 − ε)b ≤

a ≤ (1 + ε)b and (1− ε)d ≤ c ≤ (1 + ε)d imply

(1− 4ε)
b

d
≤ (1− 2ε)

b

d
≤ a

c
≤ (1 + 4ε)

b

d
(8)

We first prove that (1 − 4ε) bd ≤ (1 − 2ε) bd ≤
a
c . By

inequalities (1− ε)b ≤ a and c ≤ (1 + ε)d, we can obtain

a

c
≥
(

1− ε
1 + ε

)
b

d
=

(
1− 2ε

1 + ε

)
b

d

≥
(

1− 2ε+ 2ε2

1 + ε

)
b

d
= (1− 2ε)

b

d
≥ (1− 4ε)

b

d

Then we prove that a
c ≤ (1 + 4ε) bd . Because 0 < ε < 1

2 , we
can get 2ε(1−2ε) ≥ 0. Then by inequalities a ≤ (1 + ε)b and
(1− ε)d ≤ c, we can obtain that

a

c
≤
(

1 + ε

1− ε

)
b

d
≤
(

1 + ε+ 2ε(1− 2ε)

1− ε

)
b

d

=

(
1 + 3ε− 4ε2

1− ε

)
b

d
=

(
(1− ε)(1 + 4ε)

1− ε

)
b

d

= (1 + 4ε)
b

d

This completes the proof.
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