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Abstract

While machine learning approaches to image restora-
tion offer great promise, current methods risk training mod-
els fixated on performing well only for image corruption of
a particular level of difficulty—such as a certain level of
noise or blur. First, we examine the weakness of conven-
tional “fixated” models and demonstrate that training gen-
eral models to handle arbitrary levels of corruption is in-
deed non-trivial. Then, we propose an on-demand learning
algorithm for training image restoration models with deep
convolutional neural networks. The main idea is to exploit
a feedback mechanism to self-generate training instances
where they are needed most, thereby learning models that
can generalize across difficulty levels. On four restora-
tion tasks—image inpainting, pixel interpolation, image de-
blurring, and image denoising—and three diverse datasets,
our approach consistently outperforms both the status quo
training procedure and curriculum learning alternatives.

1. Introduction
Deep convolutional networks [21, 36, 14] have swept the

field of computer vision and have produced stellar results on
various recognition benchmarks in the past several years.
Recently, deep learning methods are also becoming a pop-
ular choice to solve low-level vision tasks in image restora-
tion, with exciting results [8, 27, 23, 44, 6, 17, 31, 43].
Restoration tasks such as image super-resolution, inpaint-
ing, deconvolution, matting, and colorization have a wide
range of compelling applications. For example, deblurring
techniques can mitigate motion blur in photos, and denois-
ing methods can recover images corrupted by sensor noise.

A learning-based approach to image restoration enjoys
the convenience of being able to self-generate training in-
stances purely based on the original real images. Whereas
training an object recognition system entails collecting im-
ages manually labeled with object categories by human an-
notators, an image restoration system can be trained with
arbitrary, synthetically corrupted images. The original im-
age itself is the ground-truth the system learns to recover.

While existing methods take advantage of this conve-

Figure 1. Illustration of four image restoration tasks: image in-
painting, pixel interpolation, image deblurring, and image denois-
ing. Each task exhibits increasing difficulty based on size of in-
painting area, percentage of deleted pixels, degree of blurriness,
and severity of noise. Our work aims to train all-rounder models
that perform well across the spectrum of difficulty for each task.

nience, they typically do so in a problematic way. Image
corruption exists in various degrees of severity, and so in
real-world applications the difficulty of restoring images
will also vary significantly. For example, as shown in Fig. 1,
an inpainter may face images with varying sizes of miss-
ing content, and a deblurring system may encounter vary-
ing levels of blur. Intuitively, the more missing pixels or the
more severe the blur, the more difficult the restoration task.

However, the norm in existing deep learning methods is
to train a model that succeeds at restoring images exhibit-
ing a particular level of corruption difficulty. In particu-
lar, existing systems self-generate training instances with
a manually fixed hyper-parameter that controls the degree
of corruption—a fixed inpainting size [31, 43], a fixed per-
centage of corrupted pixels [43, 27], or a fixed level of white
Gaussian noise [27, 41, 16, 3]. The implicit assumption is
that at test time, either i) corruption will be limited to that
same difficulty, or ii) some other process, e.g., [26, 28, 4],
will estimate the difficulty level before passing the image to
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the appropriate, separately trained restoration system. Un-
fortunately, these are strong assumptions that remain diffi-
cult to meet in practice. As a result, existing methods risk
training fixated models: models that perform well only at
a particular level of difficulty. Indeed, deep networks can
severely overfit to a certain degree of corruption. Taking
the inpainting task as an example, a well-trained deep net-
work may be able to inpaint a 32⇥32 block out of a 64⇥64
image very well, then fails miserably at inpainting a (seem-
ingly easier) 10⇥10 block (see Fig. 2 and Sec. 4). Further-
more, as we will show, simply pooling training instances
across all difficulty levels makes the deep network struggle
to adequately learn the concept.

How should we train an image restoration system to suc-
ceed across a spectrum of difficulty levels? In this work we
explore ways to let a deep learning system take control and
guide its own training. This includes i) a solution that sim-
ply pools training instances from across difficulty levels, ii)
a solution that focuses on easy/hard examples, iii) curricu-
lum learning solutions that intelligently order the training
samples from easy to hard, and iv) a new on-demand learn-
ing solution for training general deep networks across diffi-
culty levels. Our approach relies on a feedback mechanism
that, at each epoch of training, lets the system guide its own
learning towards the right proportion of sub-tasks per diffi-
culty level. In this way, the system itself can discover which
sub-tasks deserve more or less attention.

To implement our idea, we devise a general encoder-
decoder network amenable to several restoration tasks. We
evaluate the approach on four low-level tasks—inpainting,
pixel interpolation, image deblurring, and denoising—and
three diverse datasets, CelebFaces Attributes [29], SUN397
Scenes [40], and the Denoising Benchmark 11 (DB11) [7,
3]. Across all tasks and datasets, the results consistently
demonstrate the advantage of our proposed method. On-
demand learning helps avoid the common (but thus far ne-
glected) pitfall of overly specializing deep networks to a
narrow band of distortion difficulty.

2. Related Work
Deep Learning in Low-Level Vision: Deep learning for
image restoration is on the rise. Vincent et al. [38] propose
one of the most well-known models: the stacked denoising
auto-encoder. A multi-layer perceptron (MLP) is applied
to image denoising by Burger et al. [3] and post-deblurring
denoising by Schuler et al. [35]. Convolutional neural net-
works are also applied to natural image denoising [16] and
used to remove noisy patterns (e.g., dirt/rain) [9]. Apart
from denoising, deep learning is gaining traction for var-
ious other low-level tasks: super-resolution [8, 17], in-
painting [31, 43], deconvolution [42], matting [6], and col-
orization [23, 44]. While many models specialize the ar-
chitecture towards one restoration task, recent work by

Liu et al. presents a unified network for multiple tasks [27].
Our encoder-decoder pipeline also applies across tasks, and
serves as a good testbed for our main contribution—the idea
of on-demand learning. Our idea has the potential to bene-
fit any existing method currently limited to training with a
narrow band of difficulty [31, 43, 16, 3, 35, 27].

The fixation problem is also observed in recent denois-
ing work, e.g., [3, 30], but without a dedicated and general
solution. Burger et al. [3] attempt to train a network on
patches corrupted by noise with different noise levels by
giving the noise hyper-parameter as an additional input to
the network. While the model can better denoise images
at different noise levels, assuming the noise level is known
at test time is problematic. Recently, Mao et al. [30] ex-
plore how the large capacity of a very deep network can
help generalize across noise levels, but accuracy still de-
clines noticeably from the fixated counterpart.
Curriculum and Self-Paced Learning: Training neural
networks according to a curriculum can be traced back at
least to Elman [11]. Prior work mainly focuses on super-
vised learning and a single task, like the seminal work of
Bengio et al. [2]. Recently, Pentina et al. [32] pose curricu-
lum learning in a multi-task learning setting, where shar-
ing occurs only between subsequent tasks. Building on the
curriculum concept, in self-paced learning, the system au-
tomatically chooses the order in which training examples
are processed [22, 24]. We are not aware of any prior
work in curriculum/self-paced learning that deals with im-
age restoration. Like self-paced learning, our approach does
not rely on human annotations to rank training examples
from easiest to hardest. Unlike self-paced work, however,
our on-demand approach self-generates training instances
of a targeted difficulty.
Active Learning: Active learning is another way for a
learner to steer its own learning. Active learning selects
examples that seem most valuable for human labeling, and
has been widely used in computer vision to mitigate manual
annotation costs [19, 15, 10, 37, 25, 12, 18, 39]. Unlike ac-
tive learning, our approach uses no human annotation, but
instead actively synthesizes training instances of different
corruption levels based on the progress of training. All our
training data can be obtained for “free” and the ground-truth
(original uncorrupted image) is always available.

3. Roadmap
We first examine the fixation problem, and provide

concrete evidence that it hinders deep learning for image
restoration (Sec. 4). Then we present a unified view of
image restoration as a learning problem (Sec. 5.1) and de-
scribe inpainting, interpolation, deblurring, and denoising
as instantiations (Sec. 5.2). Next we introduce the on-
demand learning idea (Sec. 5.3) and our network architec-
ture (Sec. 5.4). Finally, we present results (Sec. 6).
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Figure 2. Illustration of the severity of overfitting for image in-
painting and deblurring. The models overfit to a certain degree
of corruption. They perform extremely well at that level of cor-
ruption, yet fail to produce satisfactory restoration results even for
much easier sub-tasks. See Supp. for other tasks and details.

4. The Fixation Problem
The fixation problem arises when existing image restora-

tion methods train a learning algorithm to restore images
with a controlled degree of corruption [41, 43, 3, 35, 31, 27].
For example, Yeh et al. [43] train an image inpainter at a
fixed size and location, and always delete 80% of pixels for
pixel interpolation. Pathak et al. [31] mainly focus on a
large central block for the inpainting task. Liu et al. [27]
solve denoising, pixel interpolation, and color interpolation
tasks all with a restricted degree of corruption. While such
methods may fix the level of corruption in training as a
proof of concept, they nonetheless do not offer a solution
to make the model generally applicable.

Just how bad is the fixation problem in image restora-
tion tasks? Fig. 2 helps illustrate. To get these results, we
followed the current literature to train deep networks to tar-
get a certain degree of corruption for four applications (See
Supp. for similar results of interpolation and denoising).1

Specifically, for the image inpainting task, following
similar settings of prior work [31, 43], we train a model
to inpaint a large central missing block of size 32 ⇥ 32.
During testing, the resulting model can inpaint the central
block of the same size at the same location very well (first
row in Fig. 2-a). However, if we remove a block that is
slightly shifted away from the central region, or remove a
much smaller block, the model fails to inpaint satisfactorily
(second row in Fig. 2-a). For the deblurring results in Fig. 2
(and interpolation & denoising results in Supp.), we attempt
analogous trials, i.e., training for 80% missing pixels [43],
a single width blur kernel or a single noise level, respec-
tively, then observe poor performance by the fixated model
on examples having different corruption levels.

The details of the deep networks used to generate the re-

1See Sec. 6 for quantitative results, and Sec. 5.4 for details about the
encoder-decoder network used.

sults in Fig. 2 are not identical to those in prior work. How-
ever, we stress that the limitation in their design that we
wish to highlight is orthogonal to the particular architecture.
To apply them satisfactorily in a general manner would re-
quire training a separate model for each hyper-parameter.
Even if one could do so, it is difficult to gauge the corrup-
tion level in a novel image and decide which model to use.
Finally, as we will see below, simply pooling training in-
stances across all difficulty levels is also inadequate.

5. Approach
Next we present ideas to overcome the fixation problem.

5.1. Problem Formulation
While the problem of overfitting is certainly not limited

to image restoration, both the issue we have exposed as well
as our proposed solution are driven by its special ability to
self-generate “free” training instances under specified cor-
ruption parameters. Recall that a real training image auto-
matically serves as the ground-truth; the corrupted image is
synthesized by applying a randomized corruption function.

We denote a real image as R and a corrupted image as
C (e.g., a random block is missing). We model their joint
probability distribution by p(R,C) = p(R)p(C|R), where
p(R) is the distribution of real images and p(C|R) is the
distribution of corrupted images given the original real im-
age. In the case of a fixated model, C may be a deterministic
function of R (e.g., specific blur kernel).

To restore the corrupted image, the most direct way is to
find p(R|C) by applying Bayes’ theorem. However, this is
not feasible because p(R) is intractable. Therefore, we re-
sort to a point estimate f (C,w) through an encoder-decoder
style deep network (details in Sec. 5.4) by minimizing the
following mean squared error objective:

ER,C ||R� f (C,w)||22. (1)

Given a corrupted image C0, the minimizer of the above
objective is the conditional expectation: ER[R|C = C0],
which is the average of all possible real images that could
have produced the given corrupted image C0.

Denote the set of real images {Ri}. We synthesize cor-
rupted images {Ci} correspondingly to produce training im-
age pairs {Ri,Ci}. We train our deep network to learn its
weights w by minimizing the following Monte-Carlo esti-
mate of the mean squared error objective:

ŵ = argmin
w

Â
i
||Ri � f (Ci,w)||22. (2)

During testing, our trained deep network takes a corrupted
image C as input and forwards it through the network to
output f (C,w) as the restored image.

5.2. Image Restoration Task Descriptions
Under this umbrella of a general image restoration solu-

tion, we consider four tasks.



Image Inpainting The image inpainting task aims to re-
fill a missing region and reconstruct the real image R of an
incomplete corrupted image C (e.g., with a contiguous set
of pixels removed). In applications, the “cut out” part of the
image would represent an occlusion, cracks in photographs,
or an object that should be removed from the photo. Un-
like [31, 43], we make the missing square block randomized
across the whole image in both position and scale.
Pixel Interpolation Related to image inpainting, pixel in-
terpolation aims to refill non-contiguous deleted pixels. The
network has to reason about the image structure and infer
values of the deleted pixels by interpolating from neighbor-
ing pixels. Applications include more fine-grained inpaint-
ing tasks such as removing dust spots in film.
Image Deblurring The image deblurring task aims to re-
move the blurring effects of a corrupted image C to restore
the corresponding real image R. We use Gaussian smooth-
ing to blur a real image to create training examples. The
kernel’s horizontal and vertical widths (sx and sy) control
the degree of blurriness and hence the difficulty. Applica-
tions include removing motion blur or defocus aberration.
Image Denoising The image denoising task aims to re-
move additive white Gaussian (AWG) noise of a corrupted
image C to restore the corresponding real image R. We cor-
rupt real images by adding noise drawn from a zero-mean
normal distribution with variance s (the noise level).

5.3. On-Demand Learning for Image Restoration
All four image restoration tasks offer a spectrum of dif-

ficulty. The larger the region to inpaint, the larger the per-
centage of deleted pixels, the more blurry the corrupted im-
age, or larger the variance of the noise, the more difficult
the corresponding task. To train a system that generalizes
across task difficulty, a natural approach is to simply pool
training instances across all levels of difficulty, insisting that
the learner simultaneously tackle all degrees of corruption
at once. Unfortunately, as we will see in our experiments,
this approach can struggle to adequately learn the concept.

Instead, we present an on-demand learning approach
in which the system dynamically adjusts its focus where
it is most needed. First, we divide each restoration task
into N sub-tasks of increasing difficulty. During training,
we aim to jointly train the deep neural network restoration
model (architecture details below) to accommodate all N
sub-tasks. Initially, we generate the same number of train-
ing examples from each sub-task in every batch. At the
end of every epoch, we validate on a small validation set
and evaluate the performance of the current model on all
sub-tasks. We compute the mean peak signal-to-noise ratio
(PSNR) for all images in the validation set for each sub-
task.2 A lower PSNR indicates a more difficult sub-task,

2PSNR is widely used as a good approximation to human perception of

suggesting that the model needs more training on examples
of this sub-task. Therefore, we generate more training ex-
amples for this sub-task in each batch in the next epoch.
That is, we re-distribute the corruption levels allocated to
the same set of training images. Specifically, we assign
training examples in each batch for the next epoch inversely
proportionally to the mean PSNR Pi of each sub-task Ti.
Namely,

Bi =
1/Pi

ÂN
i=1 1/Pi

·B, (3)

where B is the batch size and Bi is the number of of training
examples assigned to sub-task Ti for the next epoch. Please
see Supp. for the pseudocode of our algorithm.

On-demand learning bears some resemblance to boost-
ing and hard negative mining, in that the system refocuses
its effort on examples that were handled unsatisfactorily
by the model in previous iterations of learning. However,
whereas they reweight the influence given to individual
(static) training samples, our idea is to self-generate new
training instances in specified difficulty levels based on the
model’s current performance. Moreover, the key is not sim-
ply generating more difficult samples, but to let the network
steer its own training process, and decide how to schedule
the right proportions of difficulty.

Our approach discretizes the difficulty space via its in-
trinsic continuity property for all tasks. However, it is
the network itself that determines the difficulty level for
each discretized bin based on the restoration quality (PSNR)
from our algorithm, and steers its own training.

We arrived at this simple but effective approach after in-
vestigating several other schemes inspired by curriculum
and multi-task learning, as we shall see below. In partic-
ular, we also developed a new curriculum approach that
stages the training samples in order of their difficulty, start-
ing with easier instances (less blur, smaller cut-outs) for
the system to gain a basic representation, then moving onto
harder ones (more blur, bigger cut-outs). Wary that what
appears intuitively easier to us as algorithm designers need
not be easier to the deep network, we also considered an
“anti-curriculum” approach that reverses that ordering, e.g.,
starting with bigger missing regions for inpainting. More
details are given in Sec. 6.3.

5.4. Deep Learning Network Architecture
Finally, we present the network architecture used for all

tasks to implement our on-demand learning idea. Our image
restoration network is a simple encoder-decoder pipeline.
See Fig. 3. The encoder takes a corrupted image C of size
64⇥ 64 as input and encodes it in the latent feature space.
The decoder takes the feature representation and outputs the

quality in image restoration tasks. We found PSNR to be superior to an L2
loss; because it is normalized by the max possible power and expressed in
log scale, it is better than L2 at comparing across difficulty levels.
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Figure 3. Network architecture for our image restoration frame-
work, an encoder-decoder pipeline connected by a channel-wise
fully-connected layer. See Supp. for details.

restored image f (C,w). Our encoder and decoder are con-
nected through a channel-wise fully-connected layer. The
loss function we use during training is L2 loss, which is
the mean squared error between the restored image f (C,w)
and the real image R. We use a symmetric encoder-decoder
pipeline that is efficient for training and effective for learn-
ing. It is a unified framework that can be used for all four
image restoration tasks. Please see Supp. for the complete
network architecture and detailed design choices.

6. Experiments
We compare with traditional “fixated” learners, hard

negative mining, multi-task and curriculum methods, and
several existing methods in the literature [31, 1, 7, 3, 13, 34,
5].

6.1. Datasets
We experiment with three datasets: CelebFaces At-

tributes (CelebA) [29], SUN397 Scenes [40], and the De-
noising Benchmark 11 (DB11) [7, 3]. We do not use any
of the accompanying labels. For CelebA, we use the first
100,000 images as the training set. Among the rest of the
images, we hold out 1,000 images each for the validation
and test sets. For SUN397, similarly, we use 100,000 im-
ages for training, and 1,000 each for validation and testing.
DB11 consists of 11 standard benchmark images, such as
“Lena” and “Barbara”, that have been widely used to evalu-
ate denoising algorithms [7, 3]. We only use this dataset to
facilitate comparison with prior work.

6.2. Implementation Details
Our image restoration pipeline is implemented in Torch3.

We use ADAM [20] as the stochastic gradient descent
solver. We use the default solver hyper-parameters sug-
gested in [33] and batch size B= 100 in all experiments.

The number of sub-tasks N for on-demand learning con-
trols a trade-off between precision and run-time. Larger val-
ues of N will allow the on-demand learning algorithm more
fine-grained control on its sample generation, which could

3
https://github.com/rhgao/on-demand-learning

Figure 4. Our algorithm vs. fixated models on CelebA (See
Supp. for results on SUN397 and denoising). Our algorithm per-
forms well over the spectrum of difficulty, whereas fixated models
perform well at only a certain level of corruption.

lead to better results. However, the time complexity for val-
idating on all sub-tasks at the end of each epoch is O(N).
Therefore, a more fine-grained division of training exam-
ples among sub-tasks comes at the cost of longer running
time during training. For consistency, we divide each of the
image restoration tasks into N = 5 difficulty levels during
training. We have not tried any other values, and it is pos-
sible other settings could improve our results further. We
leave how to select the optimal value of N as future work.
An extra level (level 6) is added during testing. The level 6
sub-task can be regarded as an “extra credit” task that strains
the generalization ability of the obtained model.
Image Inpainting: We focus on inpainting missing
square blocks of size 1 ⇥ 1 to 30 ⇥ 30 at different loca-
tions across the image. We divide the range into the fol-
lowing five intervals, which define the five difficulty lev-
els: 1 ⇥ 1 � 6 ⇥ 6, 7 ⇥ 7 � 12 ⇥ 12, 13 ⇥ 13 � 18 ⇥ 18,
19⇥19�24⇥24, 25⇥25�30⇥30.
Pixel Interpolation: We train the pixel interpolation net-
work with images corrupted by removing a random per-
centage of pixels. The percentage is sampled from the
range [0%,75%]. We divide the range into the following
five difficulty levels: 0%� 15%, 15%� 30%, 30%� 45%,
45%�60%, 60%�75%.
Image Deblurring: Blur kernel widths sx and sy, which
are sampled from the range [0,5], control the level of diffi-
culty. We consider the following five difficulty levels: 0�1,
1�2, 2�3, 3�4, 4�5.
Image Denoising: We use gray-scale images for denois-
ing. The variance s of additive white Gaussian noise is
sampled from the range [0,100]. We use the following five
difficulty levels: 0�20, 20�40, 40�60, 60�80, 80�100.

6.3. Baselines
For fair comparisons, all baseline models and our

method are trained for the same amount of time (1500
epochs). Therefore, while our algorithm shifts the distri-
bution of training instances it demands on the fly, it never
receives more training instances than the baselines.

Fixated Model (Hard): The image restoration network is
trained only on one level of severely corrupted images.



CelebA SUN397
Image Deblurring Pixel Interpolation Image Inpainting Image Deblurring Pixel Interpolation Image Inpainting

L2 Loss PSNR L2 Loss PSNR L2 Loss PSNR L2 Loss PSNR L2 loss PSNR L2 Loss PSNR
Rigid Joint Learning 1.58 29.40 dB 1.02 31.86 dB 1.05 32.11 dB 2.32 28.53 dB 1.29 31.98 dB 1.80 31.13 dB

Cumulative Curriculum 1.85 28.70 dB 1.11 31.68 dB 1.28 31.47 dB 2.64 27.86 dB 1.36 31.70 dB 1.94 30.75 dB
Cumulative Anti-Curriculum 1.49 29.31 dB 1.01 31.96 dB 1.04 31.90 dB 2.39 28.34 dB 1.25 32.02 dB 1.90 30.44 dB

Staged Curriculum 125 15.59 dB 2.10 28.51 dB 1.18 31.30 dB 133 14.44 dB 2.36 28.13 dB 1.87 30.42 dB
Staged Anti-Curriculum 5.54 25.43 dB 7.76 27.82 dB 4.80 28.10 dB 6.27 25.17 dB 7.05 27.76 dB 4.35 28.42 dB

Hard Mining 2.98 27.33 dB 1.85 29.15 dB 3.31 29.47 dB 3.98 26.35 dB 1.82 29.01 dB 2.61 29.83 dB
On-Demand Learning 1.41 29.58 dB 0.95 32.09 dB 0.99 32.30 dB 2.11 28.70 dB 1.19 32.21 dB 1.69 31.38 dB

Table 1. Summary of the overall performance of all algorithms for three image restoration tasks on the CelebA and SUN397 datasets. (See
Supp. for similar results on denoising). Overall performance is measured by the mean L2 loss (in ‰, lower is better) and mean PSNR
(higher is better) averaged over all sub-tasks. Numbers are obtained over 20 trials with standard error (SE) approximately 5⇥10�6 for L2
loss and 3⇥10�3 for PSNR on average. A paired t-test shows the results are significant with p-value 5⇥10�30.

Fixated Model (Easy): The image restoration network is
trained only on one level of lightly corrupted images.
Rigid Joint Learning: The image restoration network is
trained on all sub-tasks of different difficulty levels (level
1-N) jointly. We allocate the same number of training ex-
amples for each sub-task per batch.
Staged Curriculum Learning: The network starts at the
easiest sub-task (level 1) and gradually switches to more
difficult sub-tasks. At any time, the network trains on only
one sub-task. It trains on each sub-task for 300 epochs.
Staged Anti-Curriculum Learning: The network per-
forms as the above, but reverses the curriculum to start with
the most difficult task (level N).
Cumulative Curriculum Learning: The network starts
at the easiest sub-task (level 1) and gradually adds more dif-
ficult sub-tasks and learns them jointly. More specifically,
the baseline model is first trained on level 1 sub-task for 300
epochs, and then performs rigid joint learning on sub-tasks
of level 1 and 2 for 300 epochs, followed by performing
rigid joint learning on sub-tasks of level 1,2,3 for another
300 epochs, and so on.
Cumulative Anti-Curriculum Learning: The network
performs as the above, but reverses the curriculum.
Hard Mining: For each task, we create a dataset of 1M
images with various corruptions. We directly train on the
dataset for 50 epochs, then continue training with hard min-
ing until convergence. To select hard examples, we identify
those with the largest reconstruction loss and use them to
compute and back propagate gradients. Specifically, in each
batch, we select the 10 with highest loss.

As far as source training data, the fixated model base-
lines represent the status quo in using deep learning for
image restoration tasks [27, 31, 43, 41, 16, 3, 35], while
the rigid joint learning baseline represents the natural solu-
tion of pooling all training data [16, 30]. The curriculum
methods are of our own design. The hard mining baseline
is designed to best mimic traditional hard negative mining
strategies. Our system never receives more training images
than any baseline; only the distribution of distortions among
those images evolves over epochs. We test all algorithms
across the whole spectrum of difficulty (sub-task 1-N and an
extra level), and synthesize corresponding testing instances

randomly over 20 trials. No methods have prior knowl-
edge of the test distribution, thus none are able to benefit
from better representing the expected test distribution dur-
ing training.

6.4. Fixated Model vs. Our Model
We first show that our on-demand algorithm successfully

addresses the fixation problem, where the fixated models
employ an identical network architecture to ours. For in-
painting, the fixated model (hard/easy) is only trained to in-
paint 32⇥32 or 5⇥5 central blocks, respectively; for pixel
interpolation, 80% (hard) or 10% (easy) pixels are deleted;
for deblurring, sx = sy = 5 (hard) or sx = sy = 1 (easy);
for denoising, s = 90 (hard) or s = 10 (easy).

Fig. 4 summarizes the test results on images of various
corruption levels on CelebA (See Supp. for all). The fixated
model overfits to a specific corruption level (easy or hard).
It succeeds beautifully for images within its specialty (e.g.,
the sudden spike in Fig. 4 (right)), but performs poorly when
forced to attempt instances outside its specialty. For inpaint-
ing, the fixated models also overfit to the central location,
and thus cannot perform well over the whole spectrum. In
contrast, models trained using our algorithm perform well
across the spectrum of difficulty.

6.5. Comparison to Existing Inpainter
We also compare our image inpainter against a state-of-

the-art inpainter from Pathak et al. [31]. We adapt their
provided code4 and follow the same procedures as in [31] to
train two variants on CelebA: one is only trained to inpaint
central square blocks, and the other is trained to inpaint
regions of arbitrary shapes using random region dropout.
Table 2 compares both variants to our model on the held
out CelebA test set. Their first inpainter performs very
well when testing on central square blocks (left cols), but
it is unable to produce satisfactory results when tested on
square blocks located anywhere in the image (right cols).
Their second model uses random region dropout during
training, but our inpainter still performs much better. The
“all-rounder” inpainter trained under our on-demand learn-

4
https://github.com/pathak22/context-encoder
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Figure 5. For each task, the first row shows testing examples of CelebA dataset, and the second row shows examples of SUN397 dataset.
While the fixated model can only perform well at one level of difficulty (right col), the all-rounder models trained using our proposed
algorithm perform well on images with various corruption levels. See Supp. for similar results on pixel interpolation and image denoising.

ing framework does similarly well in both cases. It is
competitive—and stronger on the more difficult task—even
without the use of adversarial loss as used in their frame-
work during training. Please also see Supp. for some real-
world applications (e.g., object removal in photos).

Method Central Square Block Arbitrary Square Block
L2 Loss PSNR L2 Loss PSNR

Pathak et al. [31] Center 0.83% 22.16 dB 6.84% 11.80 dB
Pathak et al. [31] +Rand drop 2.47% 16.18 dB 2.51% 16.20 dB

Ours 0.93% 20.74 dB 1.04% 20.31 dB
Table 2. Image inpainting accuracy for CelebA on two test sets.

6.6. On-Demand Learning vs. Alternative Models

We next compare our method to the hard mining, cur-
riculum and multi-task baselines. Table 1 shows the re-
sults (Please see Supp. for similar results on image denois-
ing). We report average L2 loss and PSNR over all test
images. Our proposed algorithm consistently outperforms
the well-designed baselines. Hard mining overfits to the
hard examples in the static pool of images, and the Staged
(Anti-)Curriculum Learning algorithms overfit to the last
sub-task they are trained on, yielding inferior overall per-
formance. The Cumulative (Anti-)Curriculum Learning al-
gorithms and Rigid Joint Learning are more competitive,
because they learn sub-tasks jointly and try to perform well
on sub-tasks across all difficulty levels. However, the higher
noise levels dominate their training procedure by providing
stronger gradients. As training goes on, these methods can-
not provide the optimal distribution of gradients across cor-
ruption levels for effective learning. By automatically guid-
ing the balance among sub-tasks, our algorithm obtains the
best all-around performance. Especially, we observe our
approach generalizes better to difficulty levels never seen
before, and performs better on the “extra credit” sub-task.

Fig. 5 shows qualitative examples output by our method
for inpainting and deblurring. See Supp. for similar results
of interpolation and denoising. These illustrate that models
trained using our proposed on-demand approach perform
well on images of different degrees of corruption. With a
single model, we inpaint blocks of different sizes at arbi-
trary locations, restore corrupted images with different per-
centage of deleted pixels, deblur images at various degrees
of blurriness, and denoise images of various noise levels. In
contrast, the fixated models can only perform well at one
level of difficulty that they specialize in. Even though we
experiment with images of small scale (64⇥ 64) for effi-
ciency, qualitative results of our method are still visually
superior to other baselines including rigid-joint learning.

We argue that the gain of our algorithm does not rest
on more training instances of certain sub-tasks, but rather a
suitable combination of sub-tasks for effective training. In-
deed, we never use more training instances than any base-
line. To emphasize this point, we separately train a rigid-
joint learning model using 200,000 training images (the
original 100,000 and the extra 100,000) from CelebA. 5 We
observe that the extra training instances do not help rigid
joint training converge to a better local minimum. This re-
sult suggests on-demand learning’s gains persist even if our
method is put at the disadvantage of having access to 50%
fewer training images.

How does the system focus its attention as it learns?
To get a sense, we examine the learned allocation of sub-
tasks during training. Initially, each sub-task is assigned the
same number of training instances per batch. In all tasks, as
training continues, the network tends to dynamically shift

5The other datasets lack sufficient data to run this test.



Image [1] [7] [3] [13] [34] [5] Ours
Barbara 29.49 30.67 29.21 31.24 28.95 29.41 28.92 / 29.63

Boat 29.24 29.86 29.89 30.03 29.74 29.92 30.11 / 30.15
C.man 28.64 29.40 29.32 29.63 29.29 29.71 29.41 / 29.78
Couple 28.87 29.68 29.70 29.82 29.42 29.71 30.04 / 30.02
F.print 27.24 27.72 27.50 27.88 27.02 27.32 27.81 / 27.77

Hill 29.20 29.81 29.82 29.95 29.61 29.80 30.03 / 30.04
House 32.08 32.92 32.50 33.22 32.16 32.54 33.14 / 33.03
Lena 31.30 32.04 32.12 32.24 31.64 32.01 32.44 / 32.36
Man 29.08 29.58 29.81 29.76 29.67 29.88 29.92 / 29.96

Montage 30.91 32.24 31.85 32.73 31.07 32.29 32.34 / 32.74
Peppers 29.69 30.18 30.25 30.40 30.12 30.55 30.29 / 30.48

Table 3. PSNRs (in dB, higher is better) on standard test images,
s = 25. We show the performance of both our all-rounder model
(left) and fixated model (right) of our image denoising system.
Note that our on-demand learning model is the only one that does
not exploit the noise level (s ) of test images.

its allocations to put more emphasis on the “harder” sub-
tasks, while never abandoning the “easiest” ones. The right
proportions of difficulty lead to the superior overall perfor-
mance of our model.

6.7. Comparison to Existing Denoising Methods
In previous sections, we have compared our on-demand

learning denoising model with alternative models. To facil-
itate comparison to prior work and demonstrate the compet-
itiveness of our image restoration framework, in this section
we perform a case study on the image denoising task using
our denoising system. See Supp. for details about how we
denoise images of arbitrary sizes.

We test our image denoising system on DB11 [7, 3].
We first compare our model with state-of-the-art denoising
algorithms on images with a specific degree of corruption
(s = 25, commonly adopted to train fixated models in the
literature). Table 3 summarizes the results6. Although us-
ing a simple encoder-decoder network, we still have very
competitive performance. Our on-demand learning model
outperforms all six existing denoising algorithms on 5 out
of the 11 test images (7 out of 11 for the fixated version
of our denoising system), and is competitive on the rest.
Note that our on-demand learning model does not need to
know the noise level of test images. However, all other com-
pared algorithms either have to know the exact noise level
(s value), or train a separate model for this specific level of
noise (s = 25).

More importantly, the advantage of our method is more
apparent when we test across the spectrum of difficulty lev-
els. We corrupt the DB11 images with AWG noise of in-
creasing magnitude and compare with the denoising algo-
rithms BM3D [7] and MLP [3] based on the authors’ public
code78 and reported results [3]. We compare with two MLP
models: one is trained only on corrupted images of s = 25,
and the other is trained on images with various noise levels.

6We take the reported numbers [3] or use the authors’ public available
code [13, 34, 5] to generate the results in Table 3.
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http://www.cs.tut.fi/

˜

foi/GCF-BM3D/

8
http://people.tuebingen.mpg.de/burger/neural_

denoising/

Figure 6. Comparisons of the performance of image denoising sys-
tems at different noise levels. Our system is competitive over the
whole spectrum of noise levels without requiring knowledge of the
corruption level of test images. Best viewed in color.

BM3D and MLP both need to be provided with the correct
level of the noise (s ) during testing. We also run a variant
of BM3D for different noise levels but fix the specified level
of noise to s = 25 .

Fig. 6 shows the results. We see that the MLP model [3]
trained on a single noise level only performs well at that
specific level of corruption. Similarly, BM3D [7] needs the
correct input of noise level in order to perform well across
the spectrum of noise levels. In contrast, our image denois-
ing system consistently performs well on all noise levels,
yet we do not assume knowledge of s during testing. This
is an essential advantage for real-world applications.

7. Conclusion

We have addressed a common problem in existing work
that leverages deep models to solve image restoration tasks:
overfitting. We devise a symmetric encoder-decoder net-
work amenable to all image restoration tasks, and propose
a simple but novel on-demand learning algorithm that turns
a fixated model into one that performs well on a task across
the spectrum of difficulty. Experiments on four tasks on
three diverse datasets demonstrate the effectiveness of our
method. Our on-demand learning idea is a general concept
not restricted to image restoration tasks, and may be appli-
cable in other domains as well, e.g., self-supervised feature
learning. As future work, we plan to design continuous sub-
tasks to avoid discrete sub-task bins, and we will explore
ways to make an image restoration task more self-paced by
allowing the network to design the most desired sub-task on
its own. Finally, another promising direction is to explore
combinations of different types of distortions.
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