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Understanding scenes and events is inherently a multi-modal experi-

ence. We perceive the world by both looking and listening (and touching,

smelling, and tasting). In particular, the sounds made by objects, whether

actively generated or incidentally emitted, offer valuable signals about their

physical properties and spatial locations—the cymbals crash on stage, the bird

tweets up in the tree, the truck revs down the block, the silverware clinks in

the drawer.

However, while recognition has made significant progress by “looking”—

detecting objects, actions, or people based on their appearance—it often does

not listen. In this thesis, I show that audio that accompanies visual scenes and

events can be used as a rich source of training signal for learning (audio-)visual

models. Particularly, I have developed computational models that leverage
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both the semantic and spatial signals in audio to understand people, places,

and things from continuous multi-modal observations. Below, I summarize my

key contributions along these two themes:

Audio as a semantic signal: First, I develop methods that learn how

different objects sound by both looking at and listening to unlabeled video

containing multiple sounding objects. I propose an unsupervised approach

to separate mixed audio into its component sound sources by disentangling

the audio frequency bases for detected visual objects. Next, I further propose

a new approach that trains audio-visual source separation models on pairs

of training videos. This co-separation framework permits both end-to-end

training and learning object-level sounds from unlabeled videos of multiple

sound sources. As an extension of the co-separation approach, then I study

the classic cocktail party problem to separate voices from the speech mixture

by leveraging the consistency between the speaker’s facial appearance and

their voice. The two modalities, vision and audition, are mutually beneficial.

While visual objects are indicative of the sounds they make to enhance audio

source separation, audio can also be informative of the visual events in videos.

Finally, I propose a framework that uses audio as a semantic signal to help

visual events classification. I design a preview mechanism to eliminate both

short-term and long-term visual redundancies using audio for efficient action

recognition in untrimmed video.

Audio as a spatial signal: Both audio and visual data also convey signifi-
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cant spatial information. The two senses naturally work in concert to interpret

spatial signals. Particularly, the human auditory system uses two ears to ex-

tract individual sound sources from a complex mixture. Leveraging the spatial

signal in videos, I devise an approach to lift a flat monaural audio signal to

binaural audio by injecting the spatial cues embedded in the accompanying vi-

sual frames. When listening to the predicted binaural audio—the 2.5D visual

sound—listeners can then feel the locations of the sound sources as they are

displayed in the video. Beyond learning from passively captured video, I next

explore the spatial signal in audio by deploying an agent to actively interact

with the environment using audio. I propose a novel representation learn-

ing framework that learns useful visual features via echolocation by capturing

echo responses in photo-realistic 3D indoor scene environments. Experimental

results demonstrate that the image features learned from echoes are compara-

ble or even outperform heavily supervised pre-training methods for multiple

fundamental spatial tasks—monocular depth prediction, surface normal esti-

mation, and visual navigation.

Our results serve as an exciting prompt for future work leveraging both

the visual and audio modalities. Motivated by how we humans perceive and

act in the world by making use of all our senses, the long-term goal of my

research is to build systems that can perceive as well as we do by combining

all the multisensory inputs. In the last chapter of my thesis, I outline the

potential future research directions that I want to pursue beyond my Ph.D.

dissertation.
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Chapter 1

Overview and Introduction

Multi-modal perception is essential to capture the richness of real-world

sensory data for objects, scenes, and events. We perceive the world by mak-

ing use of all our senses—especially looking and listening. Objects not only

have their characteristic visual appearance, but also generate unique sounds

due to their physical properties and interactions with other objects and the

environment. For example, perception of a coffee shop scene may include see-

ing cups, saucers, people, and tables, but also hearing the dishes clatter, the

espresso machine grind, and the barista shouting an order. Human develop-

mental learning is also inherently multi-modal, with young children quickly

amassing a repertoire of visual objects and their sounds: dogs bark, cats mew,

phones ring.

However, the major successes in computer vision today mostly come

from “looking” – detecting objects, actions, or people based on their visual

appearance without paying attention to their accompanying sound. Partic-

ularly, objects in static snapshots are always analyzed as if they were silent

entities in silent environments.

Cognitive science actually tells us that perception develops by making
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Status quo: Learning from
“silent” labeled snapshots

My research: Listening to
learn about the visual world

Look and Listen

Bark
Laugh

Ambient sound

Figure 1.1: While the status quo of most current computer vision systems learn
from massive datasets of labeled images that are “silent”, my thesis research
aims to both listen and look to learn about the visual world.

use of all our senses without intensive supervision [199]. Towards this goal,

my thesis research aims to break free from the status quo of learning from

massive datasets of “silent” labeled snapshots, and make a system both look

and listen to understand the visual world (Fig. 1.1). Audio that accompanies

visual scenes and events can be used as a rich source of training signals for

learning (audio-)visual models.

The importance of audio-visual learning is not only motivated by how

we humans learn, but also because it can enable many useful applications in

various fields: In the multimedia domain, audio-visual learning can be used

to enhance audio events indexing, audio denoising for closed captioning, and

instrument equalization. In healthcare, devices with both audio and visual

signals can be used to assist visually or aurally impaired people. In AR/VR,

avatars with synthesized visual and audio tracks can provide users with an

immersive virtual experience.
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(b) Audio as a spatial signal

Unlabeled video Object/event sound models

Violin
Speaker A

Speaker BDisentangle

(a) Audio as a semantic signal

Left

Right

Figure 1.2: Audio itself is a supervision signal for semantic and spatial under-
standing of the world.

In spite of the great potential, joint learning with both audio and visual

streams presents several challenges: 1) In a realistic video, object sounds are

observed not as separate entities, but as a single audio channel that mixes all

their frequencies together; 2) Not all objects can make sounds, and potential

sound sources do not always make sounds; 3) Videos are often recorded in

diverse scenes mixed with other background or ambient noises; 4) Objects are

spatially located in the 3D world, and the sounds they make are also influenced

by the geometry of the object/scene configurations.

The overarching goal of my thesis research is to recover audio-visual

models from videos and embodied agents: How can algorithms learn what and

where the sound-making objects are when multiple sound sources are present?

How can these audio-visual models benefit classic audio and vision tasks? To

address these questions, my research leverages both the semantic and spatial

signals in audio to understand people, places, and things from continuous

multimodal observations (Fig. 1.2).
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As the first step, I propose to learn audio-visual object models from un-

labeled video, then exploit the visual context to perform audio source separa-

tion in novel videos. Our approach relies on a deep multi-instance multi-label

learning framework and non-negative matrix factorization (NMF) to disen-

tangle the audio frequency bases that map to individual visual objects, even

without observing (hearing) those objects in isolation. By leveraging both

the visual and audio modalities in hundreds of thousands of unlabeled videos,

we can learn object-level sound models that generalize to separate sounds for

novel audio-visual instances. Chapter 3 discusses the approach for this work in

more detail and presents our results. This work was first published at ECCV

2018 [75].

My original two-stage method heavily relies on NMF to perform sepa-

ration, which limits its performance and practicability. Other prior or concur-

rent methods [55,163,258] for visually-guided audio source separation instead

train with artificially mixed video clips, but this puts unwieldy restrictions

on training data collection and may even prevent learning the properties of

“true” mixed sounds. In Chapter 4, I introduce a new co-separation paradigm

that permits both end-to-end training and learning object-level sounds from

unlabeled multi-source videos.1 Our novel training objective requires that the

deep neural network’s separated audio for similar-looking objects be consis-

tently identifiable, while simultaneously reproducing accurate video-level audio

1Throughout, we use “multi-source video” as shorthand for video containing multiple
sounds in its single-channel audio.
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tracks for each source training pair. Our co-separation training paradigm al-

lows training with “in the wild” sound mixes, and enhances the supervision

beyond the commonly adopted “mix-and-separate” training strategy. Our

method is able to learn well from multi-source videos, and it can successfully

separate an object sound in a test video even if the object has never been

observed individually during training. Chapter 4 discusses the approach for

this work in more detail and presents experimental results. The work was first

published at ICCV 2019 [77].

The co-separation approach introduced above makes use of the appear-

ance cues of musical instruments to separate their respective sounds. However,

in cases where the sound sources come from the same category as is the case

with multiple human speakers, it can struggle to perform instance-level sound

source separation. In Chapter 5, I extend our co-separation framework to the

task of audio-visual speech separation. Given a video, the goal of audio-visual

speech separation is to extract the speech associated with a face in spite of

simultaneous background sounds and/or other human speakers. Whereas ex-

isting methods focus on learning the alignment between the speaker’s lip move-

ments and the sounds they generate, we propose to leverage the speaker’s face

appearance as an additional prior to isolate the corresponding vocal qualities

they are likely to produce. Our approach jointly learns audio-visual speech sep-

aration and cross-modal speaker embeddings from unlabeled video. It yields

state-of-the-art results on five benchmark datasets for audio-visual speech sep-

aration and enhancement, and generalizes well to challenging real-world videos
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of diverse scenarios. Chapter 5 discusses the approach for this work in more

detail and presents experimental results. The work will be published at CVPR

2021 [78].

In Chapters 3, 4, and 5, I exploit the natural correspondence between

visual objects and the sounds they make to learn audio-visual object sound

models for the task of audio source separation. My three approaches ob-

tain state-of-the-art performance on audio-visual source separation for human

speakers, musical instruments, and other natural sounds. While visual objects

are indicative of the sounds they make to enhance audio source separation,

audio can also be informative to identify visual events in videos. Hence, next

in Chapter 6, I explore how to leverage audio to help action recognition in

untrimmed videos.

In the face of the video data deluge, today’s expensive clip-level ac-

tion classifiers are increasingly impractical. I propose a framework for ef-

ficient action recognition in untrimmed video that uses audio as a preview

mechanism to eliminate both short-term and long-term visual redundancies.

First, we devise an ImgAud2Vid framework that hallucinates clip-level fea-

tures by distilling from lighter modalities—a single frame and its accompa-

nying audio—reducing short-term temporal redundancy for efficient clip-level

recognition. Second, building on ImgAud2Vid, we further propose ImgAud-

Skimming, an attention-based long short-term memory network that itera-

tively selects useful moments in untrimmed videos, reducing long-term tem-

poral redundancy for efficient video-level recognition. Extensive experiments
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Image Credit: Michael Mandel

Spatial effects 
absent in 

monaural audio

Figure 1.3: We use two ears to extract sound sources from a mixture. Two
signals enter the left and right ears separately, causing an spatial effect [150].

on four action recognition datasets demonstrate that our method achieves the

state-of-the-art in terms of both recognition accuracy and speed. Chapter 6

discusses the approach for this work in more detail and presents experimental

results. This work was first published at CVPR 2020 [80].

So far, my methods learn from videos with monaural audio for audio-

visual source separation and action recognition. They recognize objects based

on their appearance without explicitly paying attention to their spatial loca-

tions. However, both audio and visual data also convey significant spatial

information. We see where objects are and how the room is laid out, and

we also hear them: sound-emitting objects indicate their location, and sound

reverberations reveal the room’s main surfaces, materials, and dimensions.

Similarly, as in the famous cocktail party scenario, while having a conversa-

tion at a noisy party, one can hear another voice calling out and turn to face

it. The two senses naturally work in concert to interpret spatial signals.
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As shown in Fig. 1.3, the human auditory system uses two ears to

extract individual sound sources from a complex mixture. The duplex the-

ory proposed by Lord Rayleigh says that sound source locations are mainly

determined by time differences between the sounds reaching each ear (Inter-

aural Time Difference, ITD) and differences in sound level entering the ears

(Interaural Level Difference, ILD) [179].

Starting from Chapter 7, I turn to use audio as a spatial signal for

audio-visual learning. Firstly, I study the problem of visually-guided audio

spatialization. I propose to convert common monaural audio into binaural

audio by leveraging video. We devise a deep convolutional neural network

that learns to decode the monaural soundtrack into its binaural counterpart

by leveraging visual information presented in unlabeled videos. We call the

resulting output—2.5D visual sound—the visual stream helps “lift” the flat

single channel audio into spatialized sound. In addition to sound generation,

we also demonstrate that our mono2binaural conversion process can benefit

audio-visual source separation, a key challenge in audio-visual analysis. Chap-

ter 7 discusses the approach for this work in more detail and presents results.

This work was first published at CVPR 2019 [76].

My thesis research is motivated by how we humans perceive multisen-

sory data. However, humans learn not only by watching passively captured

videos of audio-visual streams, but also by actively interacting with the envi-

ronment to learn about the world (Fig. 1.4). In the final piece of my thesis

research presented in Chapter 8, I introduce our VisualEchoes approach,
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Passively captured video 
of audio-visual stream

Learning by actively 
interacting with the world

Figure 1.4: In addition to watching the passively captured videos of audio-
visual streams, we humans learn by actively interacting with the environment
to learn about the world.

which learns spatial image representations by using audio to actively interact

with the physical world.

Several animal species (e.g., bats, dolphins, and whales) and even vi-

sually impaired humans have the remarkable ability to perform echolocation:

a biological sonar used to perceive spatial layout and locate objects in the

world. In Chapter 8, I explore the spatial cues contained in echoes and how

they can benefit vision tasks that require spatial reasoning. First I cap-

ture echo responses in photo-realistic 3D indoor scene environments. Then

I propose a novel interaction-based representation learning framework that

learns useful visual features via echolocation. We show that the learned im-

age features are useful for multiple downstream vision tasks requiring spatial

reasoning—monocular depth estimation, surface normal estimation, and vi-

sual navigation—with results comparable or even better than heavily super-
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vised pre-training. Our work opens a new path for representation learning

for embodied agents, where supervision comes from interacting with the phys-

ical world. Chapter 8 discusses the approach for this work in more detail

and presents experimental results. This work was first published at ECCV

2020 [74].

To summarize, leveraging audio as both a semantic signal and a spatial

signal, I progressively approach my ultimate goal of comprehensive audio-

visual scene understanding by studying the following four problems in this

dissertation:

• Simultaneously looking at and listening to unlabeled video containing

multiple sound sources to learn audio-visual source separation mod-

els [75, 77,78] (Chapter 3, Chapter 4, and Chapter 5).

• Leveraging audio as a preview mechanism to enable efficient action recog-

nition in untrimmed videos [80] (Chapter 6).

• Inferring binaural audio by exploiting the visual information in unlabeled

video to “lift” the flat single-channel audio into spatialized sound [76]

(Chapter 7).

• Learning spatial image representations via echolocation, where super-

vision comes from acoustically interacting with the physical world [74]

(Chapter 8).
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Next I review the important related work to the research presented

in this dissertation. Then, in Chapters 3 through 8, I discuss the proposed

methods outlined above. Finally, the last chapter summarizes my thesis re-

search and highlights some potential future directions leading to my long-term

research goal beyond this dissertation.
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Chapter 2

Related Work

In this chapter, I review prior work relevant to the six components

of my thesis research which will be discussed in Chapters 3 through 8. The

material presented here serves both to set the stage to understand our proposed

methods against their respective contexts and to overview the prior literature

surrounding the topics of this dissertation.

2.1 Modes of Supervision

2.1.1 Self-Supervised Learning

Self-supervised learning leverages structured information within the

data itself to generate “free” labels [40,91]. To this end, many “pretext” tasks

have been explored—for example, predicting the rotation applied to an input

image [6,85], discriminating image instances [60], colorizing images [136,255],

solving a jigsaw puzzle from image patches [161], predicting unseen views of

3D objects [117], or multi-task learning using synthetic imagery [181]. Tem-

poral information in videos also permits self-supervised tasks, for example, by

predicting whether a frame sequence is in the correct order [61,153] or ensuring

visual coherence of tracked objects [79,116,233]. Audio-visual data also offers
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a wealth of such tasks for self-supervised learning. Recent work explores self-

supervision for visual [13,14,165] and audio [15] feature learning, cross-modal

representations [16], and audio-visual alignment [98,130,163].

Whereas these methods aim to learn features generically useful for

recognition, the objective of our VisualEchoes approach presented in Chap-

ter 8 is to learn features generically useful for spatial estimation tasks. Ac-

cordingly, our echolocation objective is well-aligned with our target family of

spatial tasks (depth, surfaces, navigation), consistent with findings that task

similarity is important for positive transfer [254]. Furthermore, different from

prior self-supervised learning methods, rather than learn from massive reposi-

tories of human-taken photos, our proposed approach learns from interactions

with the scene via echolocation.

Our VisualVoice approach in Chapter 5 and the mono2binaural

formulation discussed in Chapter 7 are also self-supervised, but unlike any of

the above: VisualVoice learns cross-modal face-voice embeddings in a self-

supervised way to enhance audio-visual speech separation; mono2binaural

uses visual frames to supervise audio spatialization, while also learning better

sound representations for audio-visual source separation.

2.1.2 Weakly-Supervised Visual Learning

Apart from self-supervised learning, my thesis research is also related

to weakly-supervised learning. The audio-visual source separation problem de-

scribed in Chapter 3 and 4 can be seen as a weakly-supervised visual learning
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problem, where the “supervision” in our case consists of automatically clas-

sified or detected visual objects. Given unlabeled video, our approach learns

to disentangle which sounds within a mixed audio signal go with which recog-

nizable objects. In Chapter 3, the weak supervision comes from a pre-trained

image classifier; while in Chapter 4, our method uses localized object regions

from a pre-trained object detector as weak supervision for audio-visual source

separation.

Our approach of weakly-supervised audio-visual learning is entirely

novel, but at a high level it follows the spirit of prior work leveraging weak

annotations, including early “words and pictures” work [17, 49], internet vi-

sion methods [20, 218], training weakly-supervised object (activity) detec-

tors [9,21,38,42,227], image captioning methods [45,120], or grounding acoustic

units of spoken language to image regions [97,98]. In contrast to any of these

methods, our idea is to learn sound associations for objects from unlabeled

video, and to exploit those associations for audio source separation on new

videos.

2.1.3 Feature Learning by Interaction

Limited prior work explores feature learning through interaction. Un-

like the self-supervised methods discussed in Sec. 2.1.1, this line of work fosters

agents that learn from their own observations in the world, which can be crit-

ical for adapting to new environments and to realize truly “bottom-up” learn-

ing by experience. Existing methods explore touch and motion interactions.

14



In [164], objects are struck with a drumstick to facilitate learning material

properties when they sound. In [172], the trajectory of a ball bouncing off sur-

faces facilitates learning physical scene properties. In [7, 169], a robot learns

object properties by poking or grasping at objects. In [73], a drone learns not

to crash after attempting many crashes. In [6,118], an agent tracks its egomo-

tion in concert with its visual stream to facilitate learning visual categories.

In contrast, our VisualEchoes approach presented in Chapter 8 is to learn

visual features by emitting audio to acoustically interact with the scene. Our

work offers a new perspective on interaction-based feature learning and has

the advantages of not disrupting the scene physically and being ubiquitously

available, i.e., reaching all surrounding surfaces.

2.2 Separation Methods

2.2.1 Audio Source Separation

In Chapter 3, 4, 5, and 7 of this dissertation, a recurring problem

studied in my thesis research is the task called audio source separation, which

has a rich history in the signal processing literature.

Some methods assume access to multiple microphones, which facilitates

separation [48,159,251]. Others accept a single monoaural input [107,198,201,

223,224] to perform “blind” separation. Popular approaches include Indepen-

dent Component Analysis (ICA) [109], sparse decomposition [268], Computa-

tional Auditory Scene Analysis (CASA) [54], non-negative matrix factorization

(NMF) [63,64,138,223], probabilistic latent variable models [103,197], and deep
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learning [101, 107, 195]. NMF is a traditional method that is still widely used

for unsupervised source separation [94, 111, 115, 201, 222]. However, existing

methods typically require supervision to get good results. Strong supervi-

sion in the form of isolated recordings of individual sound sources [198, 224]

is effective but difficult to secure for arbitrary sources in the wild. Alterna-

tively, “informed” audio source separation uses special-purpose auxiliary cues

to guide the process, such as a music score [100], text [137], or manual user

guidance [23,47,224].

Compared to all the audio-only methods above, our approaches learn

audio source separation models from unlabeled videos by leveraging the visual

information. Unlike the audio-only methods, we use visual cues to guide the

separation process (Chapters 3, 4, 5, and 7).

2.2.2 Audio-Visual Source Separation

There is series of work on audio-visual source separation. The idea of

guiding audio source separation using visual information can be traced back

to [39,65], where mutual information is used to learn the joint distribution of

the visual and auditory signals, then applied to isolate human speakers. Sub-

sequent work explores audio-visual subspace analysis [171,196], NMF informed

by visual motion [167, 190], statistical convolutive mixture models [182], and

correlating temporal onset events [19, 139]. The work of [171] attempts both

localization and separation simultaneously; however, it assumes a moving ob-

ject is present and only aims to decompose a video into background (assumed
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to be low-rank) and foreground sounds/pixels.

Whereas this prior work correlates low-level visual patterns—particularly

motion and onset events—with the audio channel, we propose to learn from

video how different objects look and sound, whether or not an object moves

with obvious correlation to the sounds. Our methods assume access to an

image classifier (Chapter 3), an object detector (Chapter 4), or a face detector

(Chapter 5), but assume no side information about a novel test video. Fur-

thermore, whereas existing methods analyze a single input video in isolation

and are largely constrained to human speakers and instruments, our approach

learns a valuable prior for audio separation from a large library of unlabeled

videos.

Concurrently with our work, and independently of it, a growing body

of work has recently begun to leverage deep learning for audio-visual source

separation on speech [3, 4, 35, 55, 69, 163] and musical instruments [70, 77, 187,

246,257,258]. In contrast, in Chapter 3, we study a broader set of object-level

sounds including instruments, animals, and vehicles. Moreover, our method’s

training data requirements are distinctly more flexible. We are the first to learn

from uncurated “in the wild” videos that contain multiple objects and mul-

tiple audio sources. Furthermore, an important novelty of our co-separation

approach in Chapter 4 is in an end-to-end system that allows more flexi-

ble training with multi-source data. Similar to audio-only methods, almost

all audio-visual source separation methods use a “mix-and-separate” train-

ing paradigm to perform video-level separation by artificially mixing training
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videos. In contrast, our co-separation approach performs source separation at

the object level to explicitly model sounds coming from different visual objects,

and our model enforces separation within a video during training. Different

from the prior work on audio-visual speech separation, our VisualVoice ap-

proach in Chapter 5 solves for speech separation by incorporating both lip

motion and cross-modal face-voice attributes. In particular, we propose a

multi-task learning framework to jointly learn audio-visual speech separation

and cross-modal speaker embeddings. The latter helps learn separation from

unlabeled video (i.e., no identity labels, no enrollment of users) by surfacing

the sound properties consistent with different facial appearances, as we show

in the results.

Finally, while all the methods above exploit mono audio cues to perform

audio-visual source separation, our approach described in Chapter 7 proposes

to predict binaural cues to enhance separation, which is entirely novel. By

transforming mono to binaural through visual guidance, we can leverage the

resulting representation to improve the separation quality.

2.3 Cross-Modal Learning with Faces and Voices

There are strong links between how a person’s face looks and how their

voice sounds. Leveraging this link, cross-modal learning methods explore a

range of interesting tasks: face reconstruction from audio [162], talking face

generation [263], emotion recognition [8], speaker diarization [34], speech recog-

nition [36], and speaker identification [37,126,157,158,234]. Unlike any of the
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above, our VisualVoice approach in Chapter 5 tackles audio-visual speech

separation.

Taking inspiration from prior work on cross-modal matching [36, 126,

157, 158, 234], we jointly learn cross-modal face-voice embeddings with audio-

visual speech separation. However, our goal here is to enhance separation

results instead of speaker identification, with the new insight that hearing

voice elements consistent with a face’s appearance can help disentangle speech

from other overlapping sounds.

2.4 Action Recognition

Related to my work discussed in Chapter 6, action recognition in videos

has been extensively studied in the past decades. Research has transitioned

from initial methods using hand-crafted local spatiotemporal features [135,

226, 235] to mid-level descriptors [114, 178, 228], and more recently to deep

video representations learned end-to-end [58,121,194]. Various deep networks

have been proposed to model spatiotemporal information in videos [25, 57,

173, 209, 232]. Recent work includes capturing long-term temporal structure

via recurrent networks [46,253] or ranking functions [62], pooling across space

and/or time [86, 229], modeling hierarchical or spatiotemporal information in

videos [170,214], building long-term temporal relations [237,260], or boosting

accuracy by treating audio as another (late-fused) input modality [124, 146,

231,241].

The above work focuses on building powerful models to improve recog-
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nition without taking the computation cost into account, whereas our work

aims to perform efficient action recognition in long untrimmed videos. Some

work balances the accuracy-efficiency trade-off by using compressed video rep-

resentations [192,238] or designing efficient network architectures [31,141,210,

244,269]. In contrast, we propose to leverage audio to enable efficient clip-level

and video-level action recognition in long untrimmed videos.

Our approach is most related to the limited prior work on selecting

salient frames or clips for action recognition in untrimmed videos. Whereas

we use only weakly labeled video to train, some methods assume strong hu-

man annotations, i.e., ground truth temporal boundaries [250] or sequential

annotation traces [10]. Several recent methods [56,204,240,242] propose rein-

forcement learning (RL) approaches for video frame selection. Without using

guidance from strong human supervision, they ease the learning process by

restricting the agent to a rigid action space [56], guiding the selection process

of the agent with a global memory module [242], or using multiple agents to

collaboratively perform frame selection [240].

Unlike any of the above, we introduce a video skimming mechanism to

select the key moments in videos aided by audio. We use audio as an efficient

way to preview dynamic events for fast video-level recognition. Furthermore,

our approach requires neither strong supervision nor complex RL policy gradi-

ents, which are often unwieldy to train. SCSampler [131] also leverages audio

to accelerate action recognition in untrimmed videos. However, they only con-

sider video-level redundancy by sampling acoustically or visually salient clips.
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In contrast, we address both clip-level and video-level redundancy, and we

jointly learn the selection and recognition mechanisms. We include a compre-

hensive experimental comparison to methods in this genre.

2.5 Cross-Modal Distillation

Knowledge distillation [102] addresses the problem of training smaller

models from larger ones. In Chapter 6, we propose to distill the knowledge

from an expensive clip-based model to a lightweight image-audio based model.

Other forms of cross-modal distillation consider transferring supervision from

RGB to flow or depth [95] or from a visual network to an audio network, or

vice versa [8, 15, 72, 165]. In the opposite direction of ours, DistInit [87] per-

forms uni-modal distillation from a pre-trained image model to a video model

for representation learning from unlabeled video. Instead, we perform multi-

modal distillation from a video model to an image-audio model for efficient

clip-based action recognition.

2.6 Auditory Scene Analysis using Echoes

Our VisualEchoes approach presented in Chapter 8 learns spatial

image representations from echoes. Previous work also shows that using echo

responses only, one can predict 2D [12] or 3D [44] room geometry and ob-

ject shape [67]. Additionally, echoes can complement vision, especially when

vision-based depth estimates are not reliable, e.g., on transparent windows or

featureless walls [127,249]. In dynamic environments, autonomous robots can
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leverage echoes for obstacle avoidance [213] or mapping and navigation [53]

using a bat-like echolocation model. Concurrently with our work, a low-cost

audio system called BatVision is used to predict depth maps purely from echo

responses [32]. Our work explores a novel direction for auditory scene analysis

by employing echoes for spatial visual feature learning, and unlike prior work,

the resulting features are applicable in the absence of any audio.

2.7 Monocular Depth Estimation

Related to my VisualEchoes work discussed in Chapter 8 where

we predict depth from echoes, recent methods on monocular depth estima-

tion focus on improving neural network architectures [68] or graphical mod-

els [143, 230, 245], employing multi-scale feature fusion and multi-task learn-

ing [51, 106], leveraging motion cues from successive frames [212], or transfer

learning [122]. However, these approaches rely on depth-labeled data that

can be expensive to obtain. Hence, recent approaches leverage scenes’ spa-

tial and temporal structure to self-supervise depth estimation, by using the

camera motion between pairs of images [82, 88] or frames [89, 119, 219, 265],

or consistency cues between depth and features like surface normals [248] or

optical flow [177]. Unlike any of these existing methods, we show that au-

dio in the form of an echo response can be effectively used to recover depth,

and we develop a novel feature learning method that benefits a purely visual

representation (no audio) at test time.
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My dissertation focuses on audio-visual learning, and throughout I

leverage both the semantic and spatial signals in audio for audio-visual source

separation (Chapter 3, 4, 5), action recognition (Chapter 6), audio spatializa-

tion (Chapter 7), and spatial image representation learning (Chapter 8). The

above sections have reviewed the important related work to these audio-visual

learning tasks presented in this dissertation. Apart from these tasks, recent

inspiring work also integrates both audio and visual cues on an array of other

tasks including self-supervised representation learning [13, 15, 130, 163, 165],

localizing sounds in video frames [14, 105, 191, 207], generating sounds from

video [30,164,256,264], and audio-visual navigation [28,29,71].

Starting from the next chapter, I will move on to present the techni-

cal details of the approaches together with the experimental results for each

component of my dissertation.
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Chapter 3

Disentangling Object Sounds from Unlabeled

Video

1In this chapter, I introduce my first attempt to leverage the natural

correspondence between visual objects and the sounds they make to learn

audio-visual object sound models. I propose a method that learns how different

objects sound by both looking at and listening to unlabeled video containing

multiple sounding objects. This work was published in ECCV 2018 [75].

Perceiving a scene most fully requires all the senses. Yet modeling how

objects look and sound is challenging: most natural scenes and events contain

multiple objects, and the audio track mixes all the sound sources together.

Audio source separation is the separation of a set of source signals from a set

of mixed signals. Though studied extensively in the signal processing litera-

ture [63,109,223,268], it remains a difficult problem with natural data outside

of lab settings. Existing methods perform best by capturing the input with

1The work in this chapter was supervised by Prof. Kristen Grauman and was originally
published in: “Learning to Separate Object Sounds by Watching Unlabeled Video”. Ruohan
Gao, Rogerio Feris, and Kristen Grauman. In Proceedings of the European Conference on
Computer Vision, Munich, Germany, September 2018.
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Figure 3.1: Learning to separate object sounds by watching unlabeled videos.

multiple microphones, or else assume a clean set of single source audio ex-

amples is available for supervision (e.g., a recording of only a violin, another

recording containing only a drum), both of which are very limiting prereq-

uisites. The blind audio separation task evokes challenges similar to image

segmentation—and perhaps more, since all sounds overlap in the input signal.

Our goal is to learn how different objects sound by both looking at

and listening to unlabeled video containing multiple sounding objects. In this

dissertation, I propose two unsupervised approaches to disentangle mixed au-

dio into its component sound sources. In this section, I introduce my first

attempt— a two-stage approach based on multi-label multi-instance learn-

ing (MIML) and non-negative matrix factorization (NMF). Chapter 4 will

introduce my end-to-end co-separation approach. The key insight of the two

approaches is that observing sounds in a variety of visual contexts reveals the

cues needed to isolate individual audio sources; the different visual contexts

lend weak supervision for discovering the associations. For example, having
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experienced various instruments playing in various combinations before, then

given a video with a guitar and a saxophone (Fig. 3.1), one can naturally antic-

ipate what sounds could be present in the accompanying audio, and therefore

better separate them. Indeed, neuroscientists report that the mismatch neg-

ativity of event-related brain potentials, which is generated bilaterally within

auditory cortices, is elicited only when the visual pattern promotes the seg-

regation of the sounds [176]. This suggests that synchronous presentation of

visual stimuli should help to resolve sound ambiguity due to multiple sources,

and promote either an integrated or segregated perception of the sounds.

Our two novel audio-visual source separation approaches realize this

intuition. The first approach is a two-stage method that relies on non-negative

matrix factorization (NMF) to perform separation. We first leverage a large

collection of unannotated videos to discover a latent sound representation for

each object. Specifically, we use state-of-the-art image recognition tools to

infer the objects present in each video clip, and we perform NMF on each

video’s audio channel to recover its set of frequency basis vectors. At this

point it is unknown which audio bases go with which visible object(s). To

recover the association, we construct a neural network for multi-instance multi-

label learning that maps audio bases to the distribution of detected visual

objects. From this audio basis-object association network, we extract the audio

bases linked to each visual object, yielding its prototypical spectral patterns.

Finally, given a novel video, we use the learned per-object audio bases to steer

audio source separation. To address the limitations of the two-stage approach
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described above, we propose a co-separation approach that permits end-to-end

training from unlabeled multi-source videos, which will be introduced in the

next chapter.

Prior attempts at visually-aided audio source separation tackle the

problem by detecting low-level correlations between the two data streams for

the input video [19,26,39,65,139,167,171,182], and they experiment with some-

what controlled domains of musical instruments in concert or human speakers

facing the camera. In contrast, we propose to learn object-level sound models

from hundreds of thousands of unlabeled videos, and generalize to separate

new audio-visual instances. We demonstrate results for a broad set of “in the

wild” videos. While a resurgence of research on cross-modal learning from

images and audio also capitalizes on synchronized audio-visual data for vari-

ous tasks [13–15,125,130,164,165], they treat the audio as a single monolithic

input, and thus cannot associate different sounds to different objects in the

same video. Concurrent with our work, other new methods for audio-visual

source separation are being explored specifically for speech [3, 55, 69, 163] or

musical instruments [258]. In contrast, we study a broader set of object-level

sounds including instruments, animals, and vehicles. Moreover, our method’s

training data requirements are distinctly more flexible.

The main contributions in this component of my thesis research are as

follows. Firstly, we propose to enhance audio source separation in videos by

“supervising” it with visual information from image recognition results.2 Sec-

2Our task can hence be seen as “weakly supervised”, though the weak “labels” themselves
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ondly, we propose a novel deep multi-instance multi-label learning framework

to learn prototypical spectral patterns of different acoustic objects, and inject

the learned prior into an NMF source separation framework. Thirdly, to our

knowledge, we are the first to study audio source separation learned from large

scale online videos. We demonstrate state-of-the-art results on visually-aided

audio source separation and audio denoising.

I first describe our approach for learning object sound models from un-

labeled video in Sec 3.1, before presenting the experimental results in Sec 3.2.

3.1 Approach

Our approach learns what objects sound like from a batch of unla-

beled, multi-sound-source videos. Given a new video, our method returns the

separated audio channels and the visual objects responsible for them.

We first formalize the audio separation task and overview audio ba-

sis extraction with NMF (Sec. 3.1.1). Then we introduce our framework for

learning audio-visual objects from unlabeled video (Sec. 3.1.2) and our accom-

panying deep multi-instance multi-label network (Sec. 3.1.3). Next we present

an approach to use that network to associate audio bases with visual objects

(Sec. 3.1.4). Finally, we pose audio source separation for novel videos in terms

of a semi-supervised NMF approach (Sec. 3.1.5).

are inferred from the video, not manually annotated.
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3.1.1 Audio Basis Extraction

Single-channel audio source separation is the problem of obtaining

an estimate for each of the J sources sj from the observed linear mixture

x(t): x(t) =
∑J

j=1 sj(t), where sj(t) are time-discrete signals. The mixture

signal can be transformed into a magnitude or power spectrogram V ∈ RF×N
+

consisting of F frequency bins and N short-time Fourier transform (STFT) [93]

frames, which encode the change of a signal’s frequency and phase content over

time. We operate on the frequency domain, and use the inverse short-time

Fourier transform (ISTFT) [93] to reconstruct the sources.

Non-negative matrix factorization (NMF) is often employed [63,64,138,

223] to approximate the (non-negative real-valued) spectrogram matrix V as

a product of two matrices W and H:

V ≈ Ṽ = WH, (3.1)

where W ∈ RF×M
+ and H ∈ RM×N

+ . The number of bases M is a user-defined

parameter. W can be interpreted as the non-negative audio spectral patterns,

and H can be seen as the activation matrix. Specifically, each column of W

is referred to as a basis vector, and each row in H represents the gain of the

corresponding basis vector. The factorization is usually obtained by solving

the following minimization problem:

min
W,H

D(V|WH) subject to W ≥ 0,H ≥ 0, (3.2)

where D is a measure of divergence, e.g., we employ the Kullback-Leibler (KL)

divergence.
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Figure 3.2: Unsupervised training pipeline. For each video, we perform NMF
on its audio magnitude spectrogram to get M basis vectors. An ImageNet-
trained ResNet-152 network is used to make visual predictions to find the
potential objects present in the video. Finally, we perform multi-instance
multi-label learning to disentangle which extracted audio basis vectors go with
which detected visible object(s).

For each unlabeled training video, we perform NMF independently on

its audio magnitude spectrogram to obtain its spectral patterns W, and throw

away the activation matrix H. M audio basis vectors are therefore extracted

from each video.

3.1.2 Weakly-Supervised Audio-Visual Object Learning Framework

Multiple objects can appear in an unlabeled video at the same time,

and similarly in the associated audio track. At this point, it is unknown which

of the audio bases extracted (columns of W) go with which visible object(s)

in the visual frames. To discover the association, we devise a multi-instance

multi-label learning (MIML) framework that matches audio bases with the

detected objects.

As shown in Fig. 3.2, given an unlabeled video, we extract its visual

frames and the corresponding audio track. As defined above, we perform NMF
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Figure 3.3: Our deep multi-instance multi-label network takes a bag of M
audio basis vectors for each video as input, and gives a bag-level prediction of
the objects present in the audio. The visual predictions from an ImageNet-
trained CNN are used as weak “labels” to train the network with unlabeled
video.

independently on the magnitude spetrogram of each audio track and obtain

M basis vectors from each video. For the visual frames, we use an ImageNet

pre-trained ResNet-152 network [99] to make object category predictions, and

we max-pool over predictions of all frames to obtain a video-level prediction.

The top labels (with class probability larger than a threshold) are used as

weak “labels” for the unlabeled video. The extracted basis vectors and the

visual predictions are then fed into our MIML learning framework to discover

associations, as defined next.

3.1.3 Deep Multi-Instance Multi-Label Network

We cast the audio basis-object disentangling task as a multi-instance

multi-label (MIML) learning problem. In single-label MIL [43], one has bags

of instances, and a bag label indicates only that some number of the instances

within it have that label. In MIML, the bag can have multiple labels, and

there is ambiguity about which labels go with which instances in the bag.

31



We design a deep MIML network for our task. A bag of basis vectors

{B} is the input to the network, and within each bag there are M basis vectors

Bi with i ∈ [1,M ] extracted from one video. The “labels” are only available

at the bag level, and come from noisy visual predictions of the ResNet-152

network trained for ImageNet recognition. The labels for each instance (basis

vector) are unknown. We incorporate MIL into the deep network by modeling

that there must be at least one audio basis vector from a certain object that

constitutes a positive bag, so that the network can output a correct bag-level

prediction that agrees with the visual prediction.

Fig. 3.3 shows the detailed network architecture. M basis vectors are

fed through a Siamese Network of M branches with shared weights. The

Siamese network is designed to reduce the dimension of the audio frequency

bases and learns the audio spectral patterns through a fully-connected layer

(FC) followed by batch norm (BN) [112] and a rectified linear unit (ReLU).

The output of all branches are stacked to form a 1024×M dimension feature

map. Each slice of the feature map represents a basis vector with reduced

dimension. Inspired by [59], each label is decomposed to K sub-concepts to

capture latent semantic meanings. For example, for drum, the latent sub-

concepts could be different types of drums, such as bongo drum, tabla, and

so on. The stacked output from the Siamese network is forwarded through a

1×1 Convolution-BN-ReLU module, and then reshaped into a feature cube of

dimension K×L×M , where K is the number of sub-concepts, L is the number

of object categories, and M is the number of audio basis vectors. The depth
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of the tensor equals the number of input basis vectors, with each K × L slice

corresponding to one particular basis. The activation score of the (k, l,m)th

node in the cube represents the matching score of the kth sub-concept of the

lth label for the mth basis vector.

To get a bag-level prediction, we conduct two max-pooling operations.

Max pooling in deep MIL [59,239,247] is typically used to identify the positive

instances within an aggregated bag. Our first pooling is over the sub-concept

dimension (K) to generate an audio basis-object relation map. The second

max-pooling operates over the basis dimension (M) to produce a video-level

prediction. We use the following multi-label hinge loss to train the network:

L(A,V) =
1

L

L∑
i=1,i 6=Vj

|V|∑
j=1

max[0, 1− (AVj − Ai)], (3.3)

where A ∈ RL is the output of the MIML network, and represents the object

predictions based on audio bases; V is the set of visual objects, namely the

indices of the |V| objects predicted by the ImageNet-trained model. The loss

function encourages the prediction scores of the correct classes to be larger

than incorrect ones by a margin of 1. We find these pooling steps in our MIML

formulation are valuable to learn accurately from the ambiguously “labeled”

bags (i.e., the videos and their object predictions).

3.1.4 Disentangling Per-Object Bases

The MIML network above learns from audio-visual associations, but

does not itself disentangle them. The sounds in the audio track and objects
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present in the visual frames of unlabeled video are diverse and noisy (see

Sec. 3.2.1 for details about the data we use). The audio basis vectors ex-

tracted from each video could be a component shared by multiple objects,

a feature composed of them, or even completely unrelated to the predicted

visual objects. The visual predictions from ResNet-152 network give approx-

imate predictions about the objects that could be present, but are certainly

not always reliable (see Fig. 3.6 for examples).

Therefore, to collect high quality representative bases for each object

category, we use our trained deep MIML network as a tool. The audio basis-

object relation map after the first pooling layer of the MIML network produces

matching scores across all basis vectors for all object labels. We perform

a dimension-wise softmax over the basis dimension (M) to normalize object

matching scores to probabilities along each basis dimension. By examining the

normalized map, we can discover links from bases to objects. We only collect

the key bases that trigger the prediction of the correct objects (namely, the

visually detected objects). Further, we only collect bases from an unlabeled

video if multiple basis vectors strongly activate the correct object(s). See [75]

for details, and see Fig. 3.6 for examples of typical basis-object relation maps.

In short, at the end of this phase, we have a set of audio bases for each visual

object, discovered purely from unlabeled video and mixed single-channel audio.

3.1.5 Object Sound Separation for a Novel Video

Finally, we present our procedure to separate audio sources in new
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Figure 3.4: Testing pipeline. Given a novel test video, we detect the objects
present in the visual frames, and retrieve their learnt audio bases. The bases
are collected to form a fixed basis dictionary W with which to guide NMF
factorization of the test video’s audio channel. The basis vectors and the
learned activation scores from NMF are finally used to separate the sound for
each detected object, respectively.

videos. As shown in Fig. 3.4, given a novel test video q, we obtain its audio

magnitude spectrogram V(q) through STFT and detect objects using the same

ImageNet-trained ResNet-152 network as before. Then, we retrieve the learnt

audio basis vectors for each detected object, and use them to “guide” NMF-

based audio source separation. Specifically,

V(q) ≈ Ṽ
(q)

= W(q)H(q)

=
[
W

(q)
1 · · · W

(q)
j · · · W

(q)
J

] [
H

(q)
1 · · ·H

(q)
j · · ·H

(q)
J

]T
,

(3.4)

where J is the number of detected objects (J potential sound sources), and

W
(q)
j contains the retrieved bases corresponding to object j in input video

q. In other words, we concatenate the basis vectors learnt for each detected

object to construct the basis dictionary W(q). Next, in the NMF algorithm, we

hold W(q) fixed, and only estimate activations H(q) with multiplicative update

rules. Then we obtain the spectrogram corresponding to each detected object
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by V
(q)
j = W

(q)
j H

(q)
j . We reconstruct the individual (compressed) audio source

signals by soft masking the mixture spectrogram:

Vj =
V

(q)
j∑J

i=1 V
(q)
i

V, (3.5)

where V contains both magnitude and phase. Finally, we perform ISTFT on

Vj to reconstruct the audio signals for each detected object. If a detected

object does not make sound, then its estimated activation scores will be low.

This phase can be seen as a self-supervised form of NMF, where the detected

visual objects reveal which bases (previously discovered from unlabeled videos)

are relevant to guide audio separation.

3.2 Experiments

We now validate our approach and compare to existing methods.

3.2.1 Datasets

As shown in Fig. 3.5, we consider two public video datasets: Au-

dioSet [84] and the benchmark videos from [113, 140, 171], which we refer to

as AV-Bench.

• AudioSet-Unlabeled: We use AudioSet [84] as the source of unlabeled

training videos.3 The dataset consists of short 10 second video clips

that often concentrate on one event. However, our method makes no

3AudioSet offers noisy video-level audio class annotations. However, we do not use any
of its label information.
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AudioSet AV-Bench

Figure 3.5: We evaluate on AudioSet [84] and three benchmark videos
from [113,140,171], which we refer to as AV-Bench.

particular assumptions about using short or trimmed videos, as it learns

bases in the frequency domain and pools both visual predictions and

audio bases from all frames. The videos are challenging: many are of

poor quality and unrelated to object sounds, such as silence, sine wave,

echo, and infrasound. As is typical for related experimentation in the

literature [14,266], we filter the dataset to those likely to display audio-

visual events. In particular, we extract musical instruments, animals,

and vehicles, which span a broad set of unique sound-making objects.
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See [75] for a complete list of the object categories. Using the dataset’s

provided split, we randomly reserve some videos from the “unbalanced”

split as validation data, and the rest as the training data. We use videos

from the “balanced” split as test data. The final AudioSet-Unlabeled

data contains 104k, 2.9k, 1k / 22k, 1.2k, 0.5k / 58k, 2.4k, 0.6k video clips

in the train, val, test splits, for the instruments, animals, and vehicles,

respectively.

• AudioSet-SingleSource: To facilitate quantitative evaluation (cf. Sec. 3.2.4),

we construct a dataset of AudioSet videos containing only a single sound-

ing object. We manually examine videos in the val/test set, and obtain

23 such videos. There are 15 musical instruments (accordion, acoustic

guitar, banjo, cello, drum, electric guitar, flute, french horn, harmonica,

harp, marimba, piano, saxophone, trombone, violin), 4 animals (cat,

dog, chicken, frog), and 4 vehicles (car, train, plane, motorbike). Note

that our method never uses these samples for training.

• AV-Bench: This dataset contains the benchmark videos (Violin Yanni,

Wooden Horse, and Guitar Solo) used in previous studies [113,140,171].

3.2.2 Implementation Details

We extract a 10 second audio clip and 10 frames (every 1s) from each

video. Following common settings [13], the audio clip is resampled at 48 kHz,

and converted into a magnitude spectrogram of size 2401×202 through STFT

of window length 0.1s and half window overlap. We use the NMF implemen-
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tation of [64] with KL divergence and the multiplicative update solver. We

extract M = 25 basis vectors from each audio. All video frames are resized to

256×256, and 224×224 center crops are used to make visual predictions. We

use all relevant ImageNet categories and group them into 23 classes by merg-

ing the posteriors of similar categories to roughly align with the AudioSet

categories; see [75]. A softmax is finally performed on the video-level object

prediction scores, and classes with probability greater than 0.3 are kept as

weak labels for MIML training. The deep MIML network is implemented in

PyTorch with F = 2, 401, K = 4, L = 25, and M = 25. We report all results

with these settings and did not try other values. The network is trained using

Adam [128] with weight decay 10−5 and batch size 256. The starting learning

rate is set to 0.001, and decreased by 6% every 5 epochs and trained for 300

epochs.

3.2.3 Baselines

We compare to several existing methods [125,145,171,201] and multiple

baselines:

• MFCC Unsupervised Separation [201]: This is an off-the-shelf un-

supervised audio source separation method. The separated channels are

first converted into Mel frequency cepstrum coefficients (MFCC), and

then K-means clustering is used to group separated channels. This is an

established pipeline in the literature [94,111,115,222], making it a good
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representative for comparison. We use the publicly available code4.

• AV-Loc [171], JIVE [145], Sparse CCA [125]: We refer to results

reported in [171] for the AV-Bench dataset to compare to these methods.

• AudioSet Supervised Upper-Bound: This baseline uses AudioSet

ground-truth labels to train our deep MIML network. AudioSet labels

are organized in an ontology and each video is labeled by many cate-

gories. We use the 23 labels aligned with our subset (15 instruments, 4

animals, and 4 vehicles). This baseline serves as an upper-bound.

• K-means Clustering Unsupervised Separation: We use the same

number of basis vectors as our method to initialize the W matrix, and

perform unsupervised NMF. K-means clustering is then used to group

separated channels, with K equal to the number of ground-truth sources.

The sound sources are separated by aggregating the channel spectro-

grams belonging to each cluster.

• Visual Exemplar for Supervised Separation: We recognize objects

in the frames, and retrieve bases from an exemplar video for each de-

tected object class to supervise its NMF audio source separation. An

exemplar video is the one that has the largest confidence score for a

class among all unlabeled training videos.

• Unmatched Bases for Supervised Separation: This baseline is the

same as our method except that it retrieves bases of the wrong class (at

4https://github.com/interactiveaudiolab/nussl
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random from classes absent in the visual prediction) to guide NMF audio

source separation.

• Gaussian Bases for Supervised Separation: We initialize the weight

matrix W randomly using a Gaussian distribution, and then perform

supervised audio source separation (with W fixed) as in Sec. 3.1.5.

3.2.4 Quantitative Results

Visually-Aided Audio Source Separation: For “in the wild” unlabeled

videos, the ground-truth of separated audio sources never exists. Therefore,

to allow quantitative evaluation, we create a test set consisting of combined

single-source videos, following [19]. In particular, we take pairwise video com-

binations from AudioSet-SingleSource (cf. Sec. 3.2.1) and 1) compound their

audio tracks by normalizing and mixing them and 2) compound their visual

channels by max-pooling their respective object predictions. Each compound

video is a test video; its reserved source audio tracks are the ground truth for

evaluation of separation results.

To evaluate source separation quality, we use the widely used BSS-

EVAL toolbox [220] and report the Signal to Distortion Ratio (SDR). We

perform four sets of experiments: pairwise compound two videos of musical

instruments (Instrument Pair), two of animals (Animal Pair), two of vehicles

(Vehicle Pair), and two cross-domain videos (Cross-Domain Pair). For unsu-

pervised clustering separation baselines, we evaluate both possible matchings
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Instrument Pair Animal Pair Vehicle Pair Cross-Domain Pair

Upper-Bound 2.05 0.35 0.60 2.79

K-means Clustering -2.85 -3.76 -2.71 -3.32

MFCC Unsupervised [201] 0.47 -0.21 -0.05 1.49

Visual Exemplar -2.41 -4.75 -2.21 -2.28

Unmatched Bases -2.12 -2.46 -1.99 -1.93

Gaussian Bases -8.74 -9.12 -7.39 -8.21

Ours 1.83 0.23 0.49 2.53

Table 3.1: We pairwise mix the sounds of two single source AudioSet videos
and perform audio source separation. Mean Signal to Distortion Ratio (SDR
in dB, higher is better) is reported to represent the overall separation perfor-
mance.

and take the best results (to the baselines’ advantage).

Table 3.1 shows the results. Our method significantly outperforms

the Visual Exemplar, Unmatched, and Gaussian baselines, demonstrating the

power of our learned bases. Compared with the unsupervised clustering base-

lines, including [201], our method achieves large gains. It also has the capabil-

ity to match the separated source to acoustic objects in the video, whereas the

baselines can only return ungrounded audio signals. We stress that both our

method as well as the baselines use no audio-based supervision. In contrast,

other state-of-the-art audio source separation methods supervise the separa-

tion process with labeled training data containing clean ground-truth sources

and/or tailor separation to music/speech (e.g., [101,107,144]). Such methods

are not applicable here.

Visually-Aided Audio Denoising: To facilitate comparison to prior audio-

visual methods (none of which report results on AudioSet), next we perform

the same experiment as in [171] on visually-assisted audio denoising on AV-
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Wooden Horse Violin Yanni Guitar Solo Average

Sparse CCA (Kidron et al. [125]) 4.36 5.30 5.71 5.12

JIVE (Lock et al. [145]) 4.54 4.43 2.64 3.87

Audio-Visual (Pu et al. [171]) 8.82 5.90 14.1 9.61

Ours 12.3 7.88 11.4 10.5

Table 3.2: Visually-assisted audio denoising results on three benchmark videos,
in terms of NSDR (in dB, higher is better).

Bench. Following the same setup as [171], the audio signals in all videos are

corrupted with white noise with the signal to noise ratio set to 0 dB. To perform

audio denoising, our method retrieves bases of detected object(s) and appends

the same number of randomly initialized bases as the weight matrix W to

supervise NMF. The randomly initialized bases are intended to capture the

noise signal. As in [171], we report Normalized SDR (NSDR), which measures

the improvement of the SDR between the mixed noisy signal and the denoised

sound.

Table 3.2 shows the results. Note that the method of [171] is tailored

to separate noise from the foreground sound by exploiting the low-rank nature

of background sounds. Still, our method outperforms [171] on 2 out of the

3 videos, and performs much better than the other two prior audio-visual

methods [125,145]. Pu et al. [171] also exploit motion in manually segmented

regions. On Guitar Solo, the hand’s motion may strongly correlate with the

sound, leading to their better performance.
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3.2.5 Qualitative Results

Next we provide qualitative results to illustrate the effectiveness of

MIML training and the success of audio source separation. Here we run our

method on the real multi-source videos from AudioSet. They lack ground

truth, but results can be manually inspected for quality (see our video5).

Fig. 3.6 shows example unlabeled videos and their discovered audio ba-

sis associations. For each example, we show sample video frames, ImageNet

CNN visual object predictions, as well as the corresponding audio basis-object

relation map predicted by our MIML network. We also report the AudioSet

audio ground truth labels, but note that they are never seen by our method.

The first example (Fig. 3.6-a) has both piano and violin in the visual frames,

which are correctly detected by the CNN. The audio also contains the sounds

of both instruments, and our method appropriately activates bases for both

the violin and piano. Fig. 3.6-b shows a man playing the violin in the visual

frames, but both piano and violin are strongly activated. Listening to the au-

dio, we can hear that an out-of-view player is indeed playing the piano. This

example accentuates the advantage of learning object sounds from thousands

of unlabeled videos; our method has learned the correct audio bases for piano,

and “hears” it even though it is off-camera in this test video. Fig. 3.6-c/d show

two examples with inaccurate visual predictions, and our model correctly acti-

vates the label of the object in the audio. Fig. 3.6-e/f show two more examples

of an animal and a vehicle, and the results are similar. These examples sug-

gest that our MIML network has successfully learned the prototypical spectral
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patterns of different sounds, and is capable of associating audio bases with

object categories.

Please see our video5 for more results, where we use our system to

detect and separate object sounds for novel “in the wild” videos.

3.3 Conclusions

In this chapter, I presented a framework to learn object sound mod-

els from thousands of unlabeled videos. Our deep multi-instance multi-label

network automatically links audio bases to object categories. Using the dis-

entangled bases to supervise non-negative matrix factorization, our approach

successfully separates object-level sounds. We demonstrate its effectiveness on

diverse data and object categories.

Overall, as my initial attempt to learn object sound models from un-

labeled video, the results presented above are promising and constitute a no-

ticeable step towards visually guided audio source separation for more realistic

videos. However, the proposed approach is a two-stage method that heavily re-

lies on non-negative matrix factorization (NMF) to perform separation, which

limits its performance and practicability. NMF can be computationally expen-

sive if a large quantity of audio bases are used to guide the separation process.

Moreover, we assume that different classes do not share the same bases, and

extract audio bases independently from each training video without enforcing

5http://vision.cs.utexas.edu/projects/separating_object_sounds/
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them to be shared across videos. However, many audio frequency bases could

be shared by several classes and audio bases extracted from different videos

can be very different, both of which could be limiting factors that prevent

clean separation. It would be desirable to have an end-to-end audio separa-

tion system, where not only the separation quality can be informed by visual

information, but also it is not bounded by NMF. To address the above prob-

lem, in the next chapter, I will introduce my second attempt: an end-to-end

co-separation approach for audio-visual source separation, and compare their

results.
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Chapter 4

Co-Separating Sounds of Visual Objects

1In the previous chapter, I introduced my initial approach to learn

object sound models from unlabeled video. The results are encouraging, but

the quality of audio separation of the proposed two-stage method is bounded

by the performance of NMF, which limits its practicability. In this chapter,

I propose a new end-to-end solution that permits both end-to-end training

and learning object-level sounds from unlabeled multi-source videos. This was

published in ICCV 2019 [77].

Recent methods tackle the audio(-visual) source separation problem

using a “mix-and-separate” paradigm to train deep neural networks in a self-

supervised manner [55, 163, 195, 252, 258]. Namely, different from traditional

NMF-style methods that analyze structures in the mixture spectrogram to

directly separate the component sounds, such methods randomly mix au-

dio/video clips, and the learning objective is to recover the original unmixed

1The work in this chapter was supervised by Prof. Kristen Grauman and was originally
published in: “Co-Separating Sounds of Visual Objects”. Ruohan Gao and Kristen Grau-
man. In Proceedings of the IEEE International Conference on Computer Vision, Seoul,
Korea, October 2019.
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cello violin

consistently identifiable

guitar guitar

Figure 4.1: We propose a co-separation training objective to learn audio-
source separation from unlabeled video containing multiple sound sources.
Our approach learns to associate consistent sounds to similar-looking objects
across pairs of training videos. Then, given a single novel video, it returns a
separate sound track for each object.

signals. For example, one can create “synthetic cocktail parties” that mix

clean speech with other sounds [55], add pseudo “off-screen” human speakers

to other real videos [163], or superimpose audio from clips of musical instru-

ments [258].

There are two key limitations with this current mix-and-separate train-

ing strategy. First, it implicitly assumes that the original real training videos
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are dominated by single-source clips containing one primary sound maker.

However, gathering a large number of such clean “solo” recordings is expen-

sive and will be difficult to scale beyond particular classes like human speakers

and musical instruments. Second, it implicitly assumes that the sources in a

recording are independent. However, it is precisely the correlations between

real sound sources (objects) that make the source separation problem most

challenging at test time. Such correlations can go uncaptured by the artifi-

cially mixed training clips.

Towards addressing these shortcomings, we introduce a new strategy

for learning to separate audio sources. Our key insight is a novel co-separation

training objective that learns from naturally occurring multi-source videos2.

During training, our co-separation network considers pairs of training videos

and, rather than simply separate their artificially mixed soundtracks, it must

also generate audio tracks that are consistently identifiable at the object level

across all training samples. In particular, using noisy object detections from

the unlabeled training video, we devise a loss requiring that within an indi-

vidual training video, each separated audio track should be distinguishable as

its proper object. For example, when two training instances both contain a

guitar plus other instruments, there is pressure to make the separated guitar

tracks consistently identifiable by sound. See Fig. 4.1.

We draw a loose analogy to image co-segmentation [186] and call our

2Throughout, we use “multi-source video” as shorthand for video containing multiple
sounds in its single-channel audio.
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idea “co-separation”. For image co-segmentation, jointly segmenting two re-

lated images can be easier than segmenting them separately, since it allows dis-

entangling a shared foreground object from differently cluttered backgrounds.

Similarly, for our co-separation framework, we separate sounds for pairs of

training videos and enforce the separated audio tracks to be consistently iden-

tifiable at the object level across all training samples. Note, however, that our

co-separation operates during training only; unlike co-segmentation, at test

time our method performs separation on an individual video input.

Compared to our previous NMF-based approach described in Chap-

ter 3, our new co-separation method is end-to-end trainable and leverages

localized object regions to guide the separation process. More generally, com-

pared to other recent audio-visual source separation methods [3,163,257,258],

our model design also offers the following advantages: First, co-separation al-

lows training with “in the wild” sound mixes. It has the potential to benefit

from the variability and richness of unlabeled multi-source video. Second, it

enhances the supervision beyond “mix-and-separate”. By enforcing separation

within a single video at the object-level, our approach exposes the learner to

natural correlations between sound sources. Finally, objects with similar ap-

pearance from different videos can partner with each other to separate their

sounds jointly, thereby regularizing the learning process. In this way, our

method is able to learn well from multi-source videos, and successfully sepa-

rate an object sound in a test video even if the object has never been observed

individually during training.
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We experiment on three benchmark datasets and demonstrate the ad-

vantages discussed above. Our approach yields state-of-the-art results on sep-

aration and denoising. Most notably, it outperforms the prior methods and

baselines by a large margin when learning from noisy AudioSet [84] videos.

Overall co-separation is a promising direction to learn audio-visual separation

from multi-source videos.

In Sec 4.1, I describe our co-separation approach for learning audio-

visual source separation. Then I present the experimental results in Sec 4.2.

4.1 Approach

Our approach learns to leverage localized object detection to visually

guide audio source separation. In the following, we first formalize our object-

level audio-visual source separation task (Sec. 4.1.1). Then we introduce our

framework for learning object sound models from unlabeled video and our

Co-Separation deep network architecture (Sec. 4.1.2). Finally, we present

our training criteria and inference procedures (Sec. 4.1.3).

4.1.1 Problem Formulation

Given an unlabeled video clip V with accompanying audio x(t), we

denote V = {O1, . . . , ON} the set of N objects detected in the video frames.

Note that this is different in Chapter 3, where we use image-level labels pre-

dicted by a pre-trained image classifier. We treat each object as a potential

sound source, and x(t) =
∑N

n=1 sn(t) is the observed single-channel linear mix-
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ture of these sources, where sn(t) are time-discrete signals responsible for each

object. Our goal of object-level audio-visual source separation is to separate

the sound sn(t) for each object On from x(t).

Following [55, 76, 101, 108, 163, 252, 258], we start with the commonly

adopted “mix-and-separate” idea to self-supervise source separation. Given

two training videos V1 and V2 with corresponding audios x1(t) and x2(t), we use

a pre-trained object detector to find objects in both videos. Then, we mix the

audios of the two videos and obtain the mixed signal xm(t) = x1(t)+x2(t). The

mixed audio xm(t) is transformed into a magnitude spectrogram XM ∈ RF×N
+

consisting of F frequency bins and N short-time Fourier transform (STFT) [93]

frames, which encodes the change of a signal’s frequency and phase content

over time.

Our learning objective is to separate the sound each object makes from

xm(t) conditioned on the localized object regions. For example, Fig. 4.3 il-

lustrates a scenario of mixing two videos V1 and V2 with two objects O1, O2

detected in V1 and one object O3 detected in V2. The goal is to separate s1(t),

s2(t), and s3(t) for objects O1, O2, and O3 from the mixture signal xm(t),

respectively. To perform separation, we predict a spectrogram mask Mn for

each object. We use real-valued ratio masks and obtain the predicted magni-

tude spectrogram by soft masking the mixture spectrogram: Xn = XM ×Mn.

Finally, we use the inverse short-time Fourier transform (ISTFT) [93] to re-

construct the waveform sound for each object source.

Going beyond video-level mix-and-separation, the key insight of our
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approach is to simultaneously enforce separation within a single video at the

object level. This enables our method to learn object sound models even from

multi-source training videos. Our new co-separation framework can capture

the correlations between sound sources and is able to learn from noisy Web

videos, as detailed next.

4.1.2 Co-Separation Framework

Next we present our Co-Separation training framework and our net-

work architecture to perform separation.

Object Detection: Firstly, we train an object detector for a vocabulary of

C objects. In general, this detector should cover any potential sound-making

object categories that may appear in training videos. Our implementation

uses the Faster R-CNN [180] object detector with a ResNet-101 [99] backbone

trained with Open Images [132]. For each unlabeled training video, we use

the pre-trained object detector to find objects in all video frames. Then,

we gather all object detections across frames to obtain a video-level pool of

objects. See [77] for details.

Audio-Visual Separator: We use the localized object regions to guide

the source separation process. Fig. 4.2 illustrates our audio-visual separator

network that performs audio-visual feature aggregation and source separation.

A related design for multi-modal feature fusion is also used in [76, 155, 163]

for audio spatialization and separation. However, unlike those models, our
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Figure 4.2: Our audio-visual separator network takes a mixed audio signal and
a detected object from its accompanying video as input, and performs joint
audio-visual analysis to separate the portion of sound responsible for the input
object region.

separator network combines the visual features of a localized object region

and the audio features of the mixed audio to predict a magnitude spectrogram

mask for source separation.

The network takes a detected object region and the mixed audio signal

as input, and separates the portion of the sound responsible for the object. We

use a ResNet-18 network to extract visual features after the 4th ResNet block

with size (H/32)×(W/32)×D, where H, W, D denote the frame and channel

dimensions. We then pass the visual feature through a 1× 1 convolution layer

to reduce the channel dimension, and use a fully-connected layer to obtain an

aggregated visual feature vector.
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On the audio side, we adopt a U-Net [184] style network for its effective-

ness in dense prediction tasks, similar to [76,163,258]. The network takes the

magnitude spectrogram XM as input and passes it through a series of convo-

lution layers to extract an audio feature of dimension (T/128)× (F/128)×D.

We replicate the visual feature vector (T/128) × (F/128) times, tile them to

match the audio feature dimension, and then concatenate the audio and visual

feature maps along the channel dimension. Then a series of up-convolutions

are performed on the concatenated audio-visual feature map to generate a mul-

tiplicative spectrogram mask M. We find spectrogram masks to work better

than direct prediction of spectrograms or raw waveforms for source separation,

confirming reports in [55, 76, 225]. The separated spectrogram for the input

object is obtained by multiplying the mask and the spectrogram of the mixed

audio:

X = XM ×M. (4.1)

Finally, ISTFT is applied to the spectrogram to produce the separated real-

time signal. See [77] for more details.

Co-Separation: Our proposed co-separation framework first detects ob-

jects in a pair of videos, then mixes their audios at the video level, and finally

separates the sounds for each detected object class. As shown in Fig. 4.3, for

each video pair, we randomly sample a high confidence object window for each

class detected in either video, and use the localized object region to guide audio

source separation using the audio-visual separator network. For each object
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Figure 4.3: Co-separation training pipeline: our object-level co-separation
framework first detects objects in a pair of videos, then mixes the audios at
the video-level, and separates the sounds for each visual object. The network
is trained by minimizing the combination of the co-separation and object-
consistency losses defined in Sec. 4.1.2.

On, we predict a mask Mn, and then generate the corresponding magnitude

spectrogram.

Let V1 and V2 denote the set of objects for the two videos. We want

to separate the sounds of their corresponding objects together from the audio

mixture of V1 and V2. For each video, summing up the separated sounds of all

objects should ideally reconstruct the audio signal for that video. Namely,

x1(t) =

|V1|∑
i

si(t) and x2(t) =

|V2|∑
i

si(t), (4.2)

where |V1| and |V2| are the number of detected objects for V1 and V2. For

simplicity of notation, we defer presenting how we handle background sounds

(those unattributable to detected objects) until later in this section. Because

we are operating in the frequency domain, the above relationship will only hold
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approximately due to phase interference. As an alternative, we approximate

Eq. (4.2) by enforcing the following relationship on the predicted magnitude

spectrograms:

XV1 ≈
|V1|∑
i

Xi and XV2 ≈
|V2|∑
i

Xi, (4.3)

whereXV1 andXV2 are the magnitude spectrograms for x1(t) and x2(t). There-

fore, we minimize the following co-separation loss over the separated magni-

tude spectrograms:

Lco-separation spectrogram = ||
|V1|∑
i=1

Xi −XV1||1 + ||
|V2|∑
i=1

Xi −XV2||1, (4.4)

which approximates to minimizing the following loss function over their pre-

dicted ratio masks:

Lco-separation mask = ||
|V1|∑
i=1

Mi −MV1||1 + ||
|V2|∑
i=1

Mi −MV2||1, (4.5)

where MV1 and MV2 are the ground-truth spectrogram ratio masks for the

two videos, respectively. Namely,

MV1 =
XV1

XV1 +XV2
and MV2 =

XV2

XV1 +XV2
. (4.6)

In practice, we find that computing the loss over masks (vs. spectograms)

makes the network easier to learn. We hypothesize that the sigmoid after the

last layer of the audio-visual separator bounds the masks, making them more

constrained and structured compared to spectrograms. In short, the proposed

co-separation loss provides supervision to the network to only separate the
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audio portion responsible for the input visual object, so that the corresponding

audios for each of the pair of input videos can be reconstructed.

In addition to the co-separation loss that enforces separation, we also

introduce an object-consistency loss for each predicted audio spectrogram. The

intuition is that if the sources are well-separated, the predicted “category”

of the separated spectrogram should be consistent with the category of the

visual object that initially guides its separation. Specifically, for the predicted

spectrogram of each object, we introduce another ResNet-18 audio classifier

that targets the weak labels of the input visual objects. We use the following

cross-entropy loss:

Lobject-consistency =
1

|V1|+ |V2|

|V1|+|V2|∑
i=1

C∑
c=1

−yi,c log(pi,c), (4.7)

where C is the number of classes, yi,c is a binary indicator on whether class

label c is the correct classification for predicted spectrogram Xi, and pi,c is the

predicted probability for class c.

Not all sounds in a video will be attributable to a visually detected

object. To account for ambient sounds, off-screen sounds, and noise, we incor-

porate a C + 1st “adaptable” audio class, as follows. During training, we pair

each video with a visual scene feature in addition to the detected objects from

the pre-trained object detector. Then an additional mask Madapt responsible

for the scene context is also predicted in Eq. (4.5) for both V1 and V2 to be

optimized jointly. This step arms the network with the flexibility to assign

noise or unrelated sounds to this “adaptable” class, leading to cleaner separa-
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tion for sounds of the detected visual objects. These adaptable objects (ideally

ambient sounds and noise) are collectively designated as having the “extra”

C + 1st audio label. The separated spectrograms for these adaptable objects

are also trained to match their category label by the object-consistency loss in

Eq. (4.7).

Putting it all together, during training the network needs to discover

separations for the multi-source videos that 1) minimize the co-separation

loss, such that the two source videos’ object sounds reassemble to produce

their original video-level audio tracks, respectively, while also 2) minimizing

the object consistency loss, such that separated sounds for any instances of

the same visual object are reliably identifiable as that sound. We stress that

our model achieves the latter without any pre-trained audio model and without

any single-source audio examples for the object class. The object consistency

loss only knows that same-object sounds should be similar after training the

network—not what any given object is expected to sound like.

4.1.3 Training and Inference

We minimize the following combined loss function and train our net-

work end to end:

L = Lco-separation mask + λLobject-consistency, (4.8)

where λ is the weight for the object-consistency loss.

We use per-pixel L1 loss for the co-separation loss, and weight the gra-
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dients by the magnitude of the spectrogram of the mixed audio. The network

uses the weighted gradients to perform back-propagation, thereby emphasizing

predictions on more informative parts of the spectrogram.

During testing, our model takes a single realistic multi-source video to

perform source separation. Similarly, we first detect objects in the video frames

by using the pre-trained object detector. For each detected object class, we use

the most confident object region(s) as the visual input to separate the portion

of the sound responsible for this object category from its accompanying audio.

We use a sliding window approach to process videos segment by segment with

a small hop size, and average the audio predictions on all overlapping parts.

4.2 Experiments

We now validate our approach for audio-visual source separation and

compare to existing methods.

4.2.1 Datasets

We evaluate on four datasets: MUSIC, AudioSet-Unlabeled, AudioSet-

SingleSource, and AV-Bench. The last three are the same datasets used in

Chapter 3, and the details can be found in Sec. 3.2.1.

MUSIC: This MIT dataset contains YouTube videos crawled with keyword

queries [258]. It contains 685 untrimmed videos of musical solos and duets,

with 536 solo videos and 149 duet videos. The dataset is relatively clean and
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collected for the purpose of training audio-visual source separation models. It

includes 11 instrument categories: accordion, acoustic guitar, cello, clarinet,

erhu, flute, saxophone, trumpet, tuba, violin and xylophone. Following the

authors’ public dataset file of video IDs, we hold out the first/second video

in each category as validation/test data, and the rest as training data. We

split all videos into 10s clips during both training and testing, for a total of

8,928/259/269 train/val/test clips, respectively.

4.2.2 Implementation Details

Our Co-Separation deep network is implemented in PyTorch. For all

experiments, we sub-sample the audio at 11kHz, and the input audio sample

is approximately 6s long. STFT is computed using a Hann window size of

1022 and a hop length of 256, producing a 512 × 256 Time-Frequency audio

representation. The spectrogram is then re-sampled on a log-frequency scale

to obtain a T × F magnitude spectrogram of T = 256, F = 256. The settings

are the same as [258] for fair comparison.

Our object detector is trained on images of C = 15 object categories

from the Open Images dataset [132]. We filter out low confidence object de-

tections for each video, and keep the top two3 detected categories. See [77]

for details. During co-separation training, we randomly sample 64 pairs of

videos for each batch. We sample a confident object detection for each class

3This agrees with the number of objects detected by our pre-trained detector in most
training video. We did not try any other values.
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as its input visual object, paired with a random scene image sampled from the

ADE dataset [262] as the adaptable object. The object window is resized to

256 × 256, and a randomly cropped 224 × 224 region is used as the input to

the network. We use horizontal flipping, color and intensity jittering as data

augmentation. λ is set to 0.05 in Eq. (4.8). The network is trained using an

Adam optimizer with weight decay 1 × 10−4 with the starting learning rate

set to 1 × 10−4. We use a smaller starting learning rate of 1 × 10−5 for the

ResNet-18 visual feature extractor because it is pre-trained on ImageNet.

4.2.3 Quantitative Results on Source Separation

We compare to the following baselines:

• Sound-of-Pixels [258]: We use the authors’ publicly available code4 to

train 1-frame based models with ratio masks for fair comparison. Default

settings are used for other hyperparameters.

• AV-Mix-and-Separate: A “mix-and-separate” baseline using the same

audio-visual separation network as our model to do video-level separa-

tion. We use multi-label hinge loss to enforce video-level consistency, i.e.,

the class of each separated spectrogram should agree with the objects

present in that training video.

• AV-MIML [75]: An existing audio-visual source separation method

that uses audio bases learned from unlabeled videos to supervise an

4https://github.com/hangzhaomit/Sound-of-Pixels
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NMF separation process. The audio bases are learned from a deep multi-

instance multi-label (MIML) learning network. We use the results re-

ported in [75] for AudioSet and AV-Bench; the authors do not report

results in SDR and do not report results for MUSIC.

• NMF-MFCC [201]: An off-the-shelf audio-only method that performs

NMF based source separation using Mel frequency cepstrum coefficients

(MFCC). This non-learned baseline is a good representation of a well

established pipeline for audio-only source separation [94,111,115,222].

• AV-Loc [171], JIVE [145], Sparse CCA [125]: We use results

reported in [75] to compare to these methods for the audio denoising

benchmark AV-Bench.

We use the widely used mir eval library [175] to evaluate the source sep-

aration and report the standard metrics: Signal-to-Distortion Ration (SDR),

Signal-to-Interference Ratio (SIR), and Signal-to-Artifact Ratio (SAR).

Separation Results: Tables 4.1 and 4.2 show the results for the MUSIC

and AudioSet datasets, respectively.

Table 4.1 presents results on MUSIC as a function of the training source:

single-source videos (solo) or multi-source videos (solo + duet). Our method

consistently outperforms all baselines in separation accuracy, as captured by

the SDR and SIR metrics.5 While the SoP method [258] works well when

5Note that SAR measures the artifacts present in the separated signal, but not the
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Single-Source Multi-Source
SDR SIR SAR SDR SIR SAR

Sound-of-Pixels [258] 7.30 11.9 11.9 6.05 9.81 12.4
AV-Mix-and-Separate 3.16 6.74 8.89 3.23 7.01 9.14

NMF-MFCC [201] 0.92 5.68 6.84 0.92 5.68 6.84
Co-Separation (Ours) 7.38 13.7 10.8 7.64 13.8 11.3

Table 4.1: Average audio source separation results on a held out MUSIC test
set. We show the performance of our method and the baselines when training
on only single-source videos (solo) and multi-source videos (solo + duet). Note
that NMF-MFCC is non-learned, so its results do not vary across training sets.
Higher is better for all metrics. Note that SDR and SIR capture separation
accuracy; SAR captures only the absence of artifacts (and hence can be high
even if separation is poor). Standard error is approximately 0.2 for all metrics.

training only on solo videos, it fails to make use of the additional duets, and

its performance degrades when training on the multi-source videos. In con-

trast, our method actually improves when trained on a combination of solos

and multi-source duets, achieving its best performance. This experiment high-

lights precisely the limitation of the mix-and-separate training paradigm when

presented with multi-source training videos, and it demonstrates that our co-

separation idea can successfully overcome that limitation.

Our method also outperforms all baselines, including [258], when train-

ing on solos. Our better accuracy versus the AV-Mix-and-Separate baseline

and [258] shows that our object-level co-separation idea is essential. The NMF-

MFCC baseline can only return ungrounded separated signals. Therefore, we

separation accuracy. So, a less well-separated signal can achieve high(er) SAR values. In
fact, naively copying the original input twice (i.e., doing no separation) results in SAR ≈
80 in our setting.
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SDR SIR SAR

Sound-of-Pixels [258] 1.66 3.58 11.5
AV-MIML [75] 1.83 - -

AV-Mix-and-Separate 1.68 3.30 12.2
NMF-MFCC [201] 0.25 4.19 5.78

Co-Separation (Ours) 4.26 7.07 13.0

Table 4.2: Average separation results on AudioSet test set. Standard error is
approximately 0.3.

Sound-of-Pixels [258] Co-Separation (Ours)
SDR SIR SAR SDR SIR SAR

Violin/Saxophone 1.52 1.48 12.9 8.10 11.7 11.2
Violin/Guitar 6.95 11.2 15.8 10.6 16.7 12.3

Saxophone/Guitar 0.57 0.90 16.5 5.08 7.90 9.34

Table 4.3: Toy experiment to demonstrate learning to separate sounds for
objects never heard individually during training.

evaluate both possible matchings and take its best results (to the baseline’s

advantage). Our method still achieves large gains, and we also have the benefit

of matching the separated sounds to semantically meaningful visual objects in

the video.

Table 4.2 shows the results when training on AudioSet-Unlabeled and

testing on mixes of AudioSet-SingleSource. Our method outperforms all prior

methods and the baselines by a large margin on this challenging dataset. It

demonstrates that our framework can better learn from the noisy and less

curated “in the wild” videos of AudioSet, which contains many multi-source

videos.

Next we devise an experiment to test explicitly how well our method
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can learn to separate sound for objects it has not observed individually dur-

ing training. We train our model and the best baseline [258] on the follow-

ing four categories: violin solo, saxophone solo, violin+guitar duet, and vi-

olin+saxophone duet, and test by randomly mixing and separating violin,

saxophone, and guitar test solo clips. Table 4.3 shows the results. We can see

that although our system is not trained on any guitar solos, it can learn better

from multi-source videos that contain guitar and other sounds. Our method

consistently performs well on all three combinations, while [258] performs well

only on the violin+guitar mixture. We hypothesize the reason is that it can

learn by mixing the large quantity of violin solos and the guitar solo moments

within the duets to perform separation, but it fails to disentangle other sound

source correlations. Our method scores worse in terms of SAR, which again

measures artifacts, but not separation quality.

Denoising Results: As a side product of our audio-visual source separation

system, we can also use our model to perform visually-guided audio denois-

ing. As mentioned in Sec. 4.1.3, we use an additional scene image to capture

ambient/unseen sounds and noise. Therefore, given a test video with noise,

we can use the top detected visual object in the video to guide our system to

separate out the noise.

Table 4.4 shows the results on AV-Bench [75,171]. Though our method

learns only from unlabeled video and does not explicitly model the low-rank

nature of noise as in [171], we obtain state-of-the-art performance on 2 of the

3 videos. The method of [171] uses motion in manually segmented regions,

67



Wooden Horse Violin Yanni Guitar Solo

Sparse CCA [125] 4.36 5.30 5.71
JIVE [145] 4.54 4.43 2.64

AV-Loc [171] 8.82 5.90 14.1
AV-MIML [75] 12.3 7.88 11.4

Ours 14.5 8.53 11.9

Table 4.4: Visually-assisted audio denoising on AV-Bench, in terms of NSDR
(in dB, higher is better).

which may help on Guitar Solo, where the hand’s motion strongly correlates

with the sound.

4.2.4 Qualitative Results

Audio-Visual Separation Video Examples: Our video results6 show

qualitative separation results. We use our system to discover and separate

object sounds for realistic multi-source videos. They lack ground truth, but

the results can be manually inspected for quality.

Learned Audio Embedding: To visualize that our co-separation net-

work has indeed learned to separate sounds of visual objects, Fig. 4.4 displays

a t-SNE [149] embedding of the discovered sounds for various input objects

in 20K AudioSet clips. We use the features extracted at the last layer of the

ResNet-18 audio classifier as the audio representation for the separated spec-

trograms. The sounds our method learned from multi-source videos tend to

cluster by object category, demonstrating that the separator discovers sounds

6http://vision.cs.utexas.edu/projects/coseparation/
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characteristic of the corresponding objects.

Using Discovered Sounds to Detect Objects: Finally, we use our trained

audio-visual source separation network for visual object discovery using 912

noisy unseen videos from AudioSet. Given the pool of videos, we generate

object region proposals using Selective Search [211]. Then we pass these region

proposals to our network together with the audio of its accompanying video,

and retrieve the visual proposals that achieve the highest audio classification

scores according to our object consistency loss.

Fig. 4.5 shows the top retrieved proposals for several categories after

removing duplicates from the same video. We can see that our method has

learned a good mapping between the visual and audio modalities; the best vi-

sual object proposals usually best activate the audio classifier. The last column

shows failure cases where the wrong object is detected with high confidence.

They usually come from objects of similar texture or shape, like the stripes on

the man’s t-shirt and the shadow of the harp.

4.3 Conclusions

In this chapter, I presented an object-level audio-visual source sepa-

ration framework that associates localized object regions in videos to their

characteristic sounds. Similar to my first approach described in Chapter 3, we

also use visual cues to guide the separation process. While the previous NMF-

based approach only needs weak supervision from an image classifier to disen-
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1: Banjo
2: Cello
3: Drum
4: Guitar
5: Harp
6: Harmonica
7: Oboe
8: Piano
9: Saxophone
10: Trombone
11: Trumpet
12: Violin
13: Flute
14: Accordion
15: Horn

Figure 4.4: Embedding of separated sounds in AudioSet visualized with t-SNE
in two ways: (top) categories are color-coded, and (bottom) visual objects are
shown at their sound’s embedding.
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Figure 4.5: Top object proposals according to our discovered audio classifier.
Last column shows typical failure cases.

tangle frequency bases at the categorty level, our end-to-end Co-Separation

approach leverages noisy object detections as supervision to learn from large-

scale unlabeled videos. We achieve state-of-the-art results on visually-guided

audio source separation and audio denoising.

Although my new attempt addresses some of the limitations of our

previous approach, it is of course not perfect. Our method can fail when the

audio characteristics of detected objects are too similar or objects are incor-

rectly detected. Though the pre-trained object detector can recognize a wide

array of objects, we are nonetheless constrained by its breadth. Furthermore,

not all objects make sounds and not all sounds are within the camera’s view.

Motion analysis may also be valuable in order to perform instance-level source

separation (e.g., separate sounds for multiple human speakers). Our results
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above suggest that learning can be robust to such factors, yet it will be impor-

tant to explicitly model them. In the next chapter, I take one further step to

extend the co-separation framework to audio-visual speech separation, where

we leverage the complementary cues between lip motion and facial appearance

to guide the separation process.
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Chapter 5

Audio-Visual Speech Separation with

Cross-Modal Consistency

1In the previous chapter, I proposed a co-separation approach for

audio-visual source separation that permits both end-to-end training and learn-

ing object-level sounds from unlabeled multi-source videos. In this chapter,

I further extend the co-separation framework to incorporate both lip motion

and facial appearance of speakers for the specific task of audio-visual speech

separation. This work is going to be published at CVPR 2021 [78].

Human speech is rarely observed in a vacuum. Amidst the noisy din of

a restaurant, we concentrate to parse the words of our dining partner; watching

a heated presidential debate, we disentangle the words of the candidates as

they talk over one another; on a Zoom call we listen to a colleague while our

children chatter and play a few yards away. Presented with such corrupted

and entangled sounds, the human perceptual system draws heavily on visual

information to reduce ambiguities in the audio [176] and modulate attention on

an active speaker in a busy environment [90]. Automating this process of speech

1The work in this chapter was supervised by Prof. Kristen Grauman. It will be published
in: “VisualVoice: Audio-Visual Speech Separation with Cross-Modal Consistency”. Ruohan
Gao and Kristen Grauman. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Virtual, June 2021.
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separation has many valuable applications, including assistive technology for

the hearing impaired, superhuman hearing in a wearable augmented reality

device, or better transcription of spoken content in noisy in-the-wild Internet

videos.

While early work in automatic speech separation relied solely on the

audio stream [48, 159, 251], recent work explores ways to leverage its close

connections to the visual stream as well [3, 35, 55, 69, 163]. By analyzing the

facial motion in concert with the emitted speech, these methods steer the audio

separation module towards the relevant portions of the sound that ought to be

separated out from the full audio track. For example, the mouth articulates in

different shapes consistent with the phonemes produced in the audio, making

it possible to mask a spectrogram for the target human speaker based on

audio-visual (AV) consistency. However, solely relying on lip movements can

fail when lip motion becomes unreliable, e.g., the mouth region is occluded by

the microphone or the speaker turns their head away.

While AV synchronization cues are powerful, we observe that the con-

sistency between the speaker’s facial appearance and their voice is also reveal-

ing for speech separation. Intuitively, attributes like gender, age, nationality,

and body weight are often visible in the face and give a prior for what sound

qualities (tone, pitch, timbre, basis of articulation) to listen for when trying

to separate that person’s speech from interfering sounds. For example, female

speakers often register in higher frequencies, a heavier person may exhibit a

wider range of sound intensities [18], and an American speaker may sound

74



Cross-modal embedding space

Cross-modal face-to-voice matching

Audio-visual speech separation

Pull
Push

Distinctive voice tracks
aid embedding learning

Vocal and facial prior
aids separation

Figure 5.1: The two tasks cross-modal face-to-voice matching and speech sep-
aration are mutually beneficial. The embeddings serve as a prior for the voice
characteristics that enhances speech separation; the cleaner separated speech
in turn produces more distinctive audio embeddings.

more nasal. The face-voice association, supported by cognitive science stud-

ies [22], is today often leveraged for speaker identification given the recording

of a single speaker [126,157,158,234]. In contrast, the speech separation prob-

lem demands discovering a cross-modal association in the presence of multiple

overlapping sounds.

Our key insight is that these two tasks—cross-modal face-to-voice match-

ing and speech separation—are mutually beneficial. The cleaner the sound
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separation, the more accurately an embedding can link the voice to a face;

the better that embedding, the more distinctive is the prior for the voice char-

acteristics which will in turn aid separation. We thus aim to “visualize” the

voice of a person based on how they look to better separate that voice’s sound.

See Figure 5.1.

To this end, we propose VisualVoice, a multi-task learning frame-

work to jointly learn audio-visual speech separation together with cross-modal

speaker embeddings. We introduce a speech separation network that takes

video of a human speaker talking in the presence of other sounds (speech or

otherwise) and returns the isolated sound track for just their speech. Our

network relies on facial appearance, lip motion, and vocal audio to solve the

separation task, augmenting the conventional “mix-and-separate” paradigm

for audio-visual separation to account for a cross-modal contrastive loss re-

quiring the separated voice to agree with the face. Notably, our approach

requires no identity labels and no enrollment of speakers, meaning we can

train and test with fully unlabeled video.

The main contributions for this part of my thesis are as follows. Firstly,

we introduce an audio-visual speech separation framework that leverages com-

plementary cues from facial motion and cross-modal face-voice attributes. Sec-

ondly, we devise a novel multi-task framework that successfully learns both

separation and cross-modal embeddings in concert. Finally, through experi-

ments on five benchmark datasets, we demonstrate state-of-the-art results for

audio-visual speech separation and enhancement in challenging scenarios. The

76



embedding learned by our model additionally improves the state of the art for

unsupervised cross-modal speaker verification, emphasizing the yet-unexplored

synergy of the two tasks.

In Sec 5.1, I describe our VisualVoice approach for learning audio-

visual speech separation. Then I present experimental results in Sec 5.2.

5.1 Approach

Our goal is to perform audio-visual speech separation. We first for-

mally define our problem (Sec. 5.1.1); then we present our audio-visual speech

separation network that leverages both the lip motion and cross-modal facial

attributes to guide the separation process (Sec. 5.1.2); next we introduce how

we learn audio-visual speech separation and cross-modal face-voice embeddings

in a multi-task learning framework (Sec. 5.1.3); finally we present our training

criteria and inference procedures (Sec. 5.1.4).

5.1.1 Problem Formulation

Given a video V with multiple speakers, we denote x(t) =
∑K

k=1 sk(t)

as the observed single-channel linear mixture of the voices for theseK speakers,

where sk(t) are time-discrete signals responsible for each speaker. Our goal in

audio-visual speech separation is to separate the sound sk(t) for each speaker

from x(t) by leveraging the visual cues in the video. For simplicity we describe

the sources as speakers throughout, but note that the mixed sound can be

something other than speech, as we will demonstrate in results with speech
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enhancement evaluation.

To generate training examples, we follow the commonly adopted “mix-

and-separate” paradigm [3, 55, 77, 163, 258] and generate synthetic audio mix-

tures by mixing human speech segments. These speech segments are accom-

panied by the face tracks2 of the corresponding speakers, which are extracted

automatically from “in the wild” videos with background chatter, laughter,

pose variation, etc..

Suppose we have two speech segments sA1(t), sA2(t) from video VA

for speaker A, and sB(t) from video VB for speaker B.3 Let FA1 , FA2 , FB

denote the face tracks associated with the speech segments sA1(t), sA2(t), sB(t),

respectively. We create two mixture signals x1(t) and x2(t):

x1(t) = sA1(t) + sB(t), x2(t) = sA2(t) + sB(t). (5.1)

The mixture speech signals are then transformed into complex audio spectro-

grams X1 and X2.

Our training objective is to jointly separate sA1(t), sA2(t) and sB(t) for

face tracks FA1 , FA2 and FB from the two mixed signals x1(t) and x2(t). In

Sec. 5.1.3 we present a speaker consistency loss that regularizes the separation

process with the two mixtures. To perform separation, we predict complex

ideal ratio masks (cIRM) [236] MA1 , MA2 , MB1 and MB2 to separate clean

2A face track is a tracklet of face detections, which is automatically obtained through an
off-the-shelf face detector.

3No identity labels are used during training. sA1(t) and sA2(t) come from the same
training video, so we assume they share the same identity.
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Figure 5.2: Our audio-visual speech separator network takes a mixed speech
signal as input and analyses the lip motion and facial attributes in the face
track to separate the portion of sound responsible for the corresponding
speaker.

speech for the corresponding speakers from X1 and X2, respectively. Note

that we separately predict a mask for speaker B from each mixture. The

predicted spectrograms for the separated speech signals can be obtained by

complex masking the mixture spectrograms:

SAi
= Xi ∗MAi

, SBi = Xi ∗MBi , i ∈ {1, 2}, (5.2)

where ∗ indicates complex multiplication. Finally, using the inverse short-time

Fourier transform (ISTFT) [93], we reconstruct the separated speech signals.

5.1.2 Audio-Visual Speech Separator Network

Next we present the architecture of our audio-visual speech separator

network, which leverages the complementary visual cues of both lip motion
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and cross-modal facial attributes to guide the separation process. Later in

Sec. 5.1.3 we will introduce our multi-task learning framework to learn both

audio-visual speech separation and cross-modal face-voice embeddings, and

describe how we jointly separate speech from x1(t) and x2(t).

We use the visual cues in the face track to guide the speech separation

for each speaker. The visual stream of our network consists of two parts: a lip

motion analysis network and a facial attributes analysis network (Figure 5.2).

Following the state-of-the-art in lip reading [148, 151], the lip motion

analysis network takes N mouth regions of interest (ROIs)4 as input and it

consists of a 3D convolutional layer followed by a ShuffleNet v2 [147] network to

extract a time-indexed sequence of feature vectors. They are then processed

by a temporal convolutional network (TCN) to extract the final lip motion

feature map of dimension Vl ×N .

For the facial attributes analysis network, we use a ResNet-18 [99] net-

work that takes a single face image randomly sampled from the face track as

input to extract a face embedding i of dimension Vf that encodes the facial

attributes of the speaker. We replicate the facial attributes feature along the

time dimension to concatenate with the lip motion feature map and obtain a

final visual feature of dimension V ×N , where V = Vl + Vf .

The facial attributes feature represents an identity code whose role is

to identify the space of expected frequencies or other audio properties for the

4The ROIs are derived from the face track through facial landmark detection and align-
ment to a mean reference face. See [78] for details.
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speaker’s voice, while the role of the lip motion is to isolate the articulated

speech specific to that segment. Together they provide complementary visual

cues to guide the speech separation process.

On the audio side, we use a U-Net [184] style network tailored to audio-

visual speech separation. It consists of an encoder and a decoder network.

The input to the encoder is the complex spectrogram of the mixture signal of

dimension 2×F ×T , where F, T are the frequency and time dimensions of the

spectrogram. Each time-frequency bin contains the real and imaginary part of

the corresponding complex spectrogram value. The input is passed through a

series of convolutional layers with frequency pooling layers in between, which

reduce the frequency dimension while preserving the time dimension. In the

end we obtain an audio feature map of dimension D × 1×N , where D is the

channel dimension.

We then concatenate the visual and audio features along the channel

dimension to generate an audio-visual feature map of dimension (V + D) ×

1 × N . The decoder takes the concatenated audio-visual feature as input. It

has symmetric structure with respect to the encoder, where the convolutional

layer is replaced by an upconvolutional layer and the frequency pooling layer is

replaced by a frequency upsampling layer. Finally, we use a Tanh layer followed

by a Scaling operation on the output feature map to predict a bounded

complex mask of the same dimension as the input spectrogram for the speaker.

We build an audio-visual feature map for each speaker in the mixture

to separate their respective voices. Alternatively, to build a model tailored
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to two-speaker speech separation, we concatenate the visual features of both

speakers in the mixture with the audio feature to generate an audio-visual

feature map of dimension (2V +D)×1×N and simultaneously separate their

voices together. This leads to slightly better performance due to the additional

context information of the other speaker provided (see [78] for a comparison),

while a model trained with the visual feature of a single speaker can be used in

the general case where the number of speakers is unknown at inference time.

We use the applicable case in experiments. See [78] for the network details.

5.1.3 Cross-Modal Matching for Separation

Next we introduce our multi-task learning framework that simultane-

ously learns AV speech separation and cross-modal face-voice embeddings (see

Fig. 5.3). The framework includes several novel loss functions to regularize

learning.

Mask Prediction Loss: As shown in Fig. 5.4, we predict complex masks

MA1 , MA2 , MB1 , MB2 to separate speech for the corresponding speakers from

X1 and X2, respectively. We compute the following loss on the predicted

complex masks:

Lmask-prediction =
∑

i∈{A1,A2,B1,B2}

‖Mi −Mi‖2, (5.3)

where Mi denotes the ground-truth complex masks, which are obtained by

taking the complex ratio of the spectrogram of the clean speech to the corre-

sponding mixture speech spectrogram. This loss provides the main supervision
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Figure 5.3: We propose a multi-task learning framework to jointly learn audio-
visual speech separation and cross-modal face-voice embeddings. Our ap-
proach leverages the complementary cues between lip movements and cross-
modal speaker embeddings for speech separation. The embeddings serve as a
prior for the voice characteristics that enhances speech separation; the cleaner
separated speech in turn produces more distinctive audio embeddings.

to enforce the separation of clean speech.

Cross-modal Matching Loss: To capture the desired cross-modal facial

attributes to guide the separation process, we jointly learn cross-modal face-

voice embeddings. The idea aligns with prior work on cross-modal match-

ing [36, 37, 126, 157, 158, 234], but here our goal is audio separation—not per-

son identification—and rather than a single-source input, in our case the audio

explicitly contains multiple sound sources.

Similar to the facial attributes analysis network, we use a ResNet-18
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Figure 5.4: Our multi-task learning framework that jointly learns audio-visual
speech separation and cross-modal face-voice embeddings. The network is
trained by minimizing the combination of the mask prediction loss, the cross-
modal matching loss, and the speaker consistency loss defined in Sec. 5.1.3.

network as the vocal attributes analysis network Φ(·). We extract audio em-

beddings aA1 , aA2 , aB1 , aB2 for each separated speech spectrogram:

aAi = Φ(Xi ∗MAi
), aBi = Φ(Xi ∗MBi), i ∈ {1, 2}. (5.4)

Let iA and iB denote the face image embeddings extracted from the facial

attributes analysis network for speakers A and B, respectively. We use the

following triplet loss:

Lt(a, i
+, i−) = max{0, D(a, i+)−D(a, i−) + m}, (5.5)

where D(a, i) is the cosine distance of the speech embedding and the face

image embedding, and m represents the margin between the two distances.
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The cross-modal matching loss is defined as follows:

Lcross-modal = Lt(a
A1 , iA, iB) + Lt(a

A2 , iA, iB)

+ Lt(a
B1 , iB, iA) + Lt(a

B2 , iB, iA).
(5.6)

This loss forces the network to learn cross-modal face-voice embed-

dings such that the distance between the embedding of the separated speech

and the face embedding for the corresponding speaker should be smaller than

that between the separated speech embedding and the face embedding for the

other speaker, by a margin m. It encourages the speech separation network to

produce cleaner sounds so that a more accurate speech embedding can be ob-

tained to link the voice to the face. Meanwhile, the better the face embedding,

the more distinctive the facial attributes feature can be to guide the speech

separation process.

Speaker Consistency Loss: The audio segments sA1(t) and sA2(t) come

from the same speaker from video VA, so the voice characteristics of sA1(t)

and sA2(t) should be more similar compared to sB(t). Therefore, the audio

embeddings for the separated speech segments for speaker A should also be

more similar compared to that of speaker B. To capture this, we introduce a

speaker consistency loss on the audio embeddings of the separated speech:

Lconsistency = Lt(a
A1 , aA2 , aB1) + Lt(a

A1 , aA2 , aB2). (5.7)

This loss further regularizes the learning process by jointly separating sounds

using the two mixtures.
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5.1.4 Training and Inference

The overall objective function for training is as follows:

L = Lmask-prediction + λ1Lcross-modal + λ2Lconsistency, (5.8)

where λ1 and λ2 are the weight for the cross-modal matching and speaker

consistency losses, respectively. During testing, we first detect faces in the

video frames and extract the mouth ROIs for each speaker. For each speaker,

we use the mouth ROIs and one face image (a randomly selected frame) as

the visual input and predict a complex mask to separate the speech from

the mixture signal. We use a sliding window approach to perform separation

segment by segment for videos of arbitrary length.

Our audio-visual speech separation network is trained from scratch

without using any identity labels, whereas prior methods often assume ac-

cess to a pre-trained lip reading model [3, 4] or a pre-trained face recognition

model [55] that sees millions of labeled faces. Furthermore, we do not need

to pre-enroll the voice of the speakers as in [4]. Our framework can train and

test with fully unlabeled video.

5.2 Experiments

Using a total of six benchmark datasets, we validate our approach for

1) audio-visual speech separation, 2) speech enhancement (Sec. 5.2.3), and 3)

cross-modal speaker verification (Sec. 5.2.4).
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Figure 5.5: We evaluate on six challenging datasets: VoxCeleb1 [156], Vox-
Celeb2 [33], LRS2 [2], Mandarin [104], TCD-TIMIT [96] and CUAVE [168].

5.2.1 Datasets

We evaluate on six challenging datasets as shown in Fig 5.5, including

VoxCeleb2 [33], Mandarin [104], TCD-TIMIT [96], CUAVE [168], LRS2 [2],

and VoxCeleb1 [156].

VoxCeleb2 [33]: This dataset contains over 1 million utterances with

the associated face tracks extracted from YouTube videos, with 5,994 identities

in the training set and 118 identities in the test set. We hold out two videos

for each identity in the training set as our seen-heard test set, and we use 59

identities in the original test set as our validation set and the other 59 identities

as our unseen-unheard test set. Note that we make use of the identity labels

only for the purpose of making these evaluation splits. During testing, we
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randomly mix two test clips from different speakers to create the synthetic

mixture. This ensures the ground-truth of the separated speech is known

for quantitative evaluation, following standard practice [3, 55]. We randomly

sample 2,000 test parings each from the seen-heard and unseen-unheard test

sets. For speech enhancement experiments, we additionally mix the speech

mixture with non-speech audios from AudioSet [84] as background noise during

both training and testing. The types of noise include music, laughter, crying,

engine, wind, etc.. See [78] for details and video examples.

Mandarin [104], TCD-TIMIT [96], CUAVE [168], LRS2 [2]:

We evaluate on these four standard benchmark datasets to compare our model

with a series of state-of-the-art audio-visual speech separation and enhance-

ment methods in Sec. 5.2.3.2. See [78] for details.

VoxCeleb1 [156]: This dataset contains over 100,000 utterances for

1,251 celebrities extracted from YouTube videos. We evaluate on this dataset

for cross-modal speaker verification in Sec. 5.2.4. We use the same train/val/test

split as in [157] to compare with their reported results.

5.2.2 Implementation Details

Our AV speech separation framework is implemented in PyTorch. For

all experiments, we sub-sample the audio at 16kHz, and the input speech

segment is 2.55s long. STFT is computed using a Hann window length of 400

with a hop size of 160 and FFT window size of 512. The complex spectrogram

X is of dimension 2×257×256. The input to the lip motion analysis network
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is N = 64 mouth regions of interest (ROIs) of size of 88× 88, and the input to

the face attributes analysis network is a face image of size 224× 224. The lip

motion feature is of dimension Vl ×N with Vl = 512, N = 64. The dimension

for both the face and voice embeddings is 128. The entire network is trained

using an Adam optimizer with weight decay of 0.0001, batchsize of 128 with

the starting learning rate set to 1 × 10−4. λ1 and λ2 are both set to 0.01 in

Eq. 5.8. The margin m is set to 0.5 for the triplet loss. See [78] for details of

the network architecture and other optimization hyperparameters.

5.2.3 Results on Audio-Visual Speech Separation

We first evaluate on audio-visual speech separation and compare to

a series of state-of-the-art methods [3, 5, 26, 35, 55, 69, 104, 171] and multiple

baselines:

• Audio-Only: This baseline uses the same architecture as our method

except that no visual feature is used to guide the separation process. We

use the permutation invariant loss (PIT) [252] to train the network.

• Ours (lip motion): An ablation of our method where only the lip

motion analysis network is used to guide the separation process.

• Ours (static face): An ablation of our method where only the facial

attributes analysis network is used to guide the separation process.

• AV-Conv [3]: A state-of-the-art audio-visual speech separation method

that predicts the magnitude and phase of the spectrogram separately
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through two subnetworks. Because the authors’ code is available, we

can use it for extensive experiments trained and evaluated on the same

data as our method.

• Ephrat et al. [55], Afouras et al. [5], Chung et al. [35], Gab-

bay et al. [69], Hou et al. [104], Casanovas et al. [26], Pu et

al. [171]: We directly quote results from [5,35,55] to compare to a series

of prior state-of-the-art audio-visual speech separation and enhancement

methods on standard benchmarks in Sec. 5.2.3.2.

We evaluate the speech separation results using a series of standard

metrics including Signal-to-Distortion Ratio (SDR), Signal-to-Interference Ra-

tio (SIR) and Signal-to-Artifacts Ratio (SAR) from the mir eval library [175].

We also evaluate using two speech-specific metrics: Perceptual Evaluation of

Speech Quality (PESQ) [183], which measures the overall perceptual quality

of the separated speech and Short-Time Objective Intelligibility (STOI) [206],

which is correlated with the intelligibility of the signal.

5.2.3.1 Quantitative Results

Table 5.1 shows the speech separation results on the VoxCeleb2 dataset.

We use the visual features of both speakers as input to guide the separation

and simultaneously separate their voices. We present results separately for

scenarios where the lip motion is reliable and unreliable. For the reliable case,

we use the original mouth ROIs extracted automatically from the face tracks;

for the unreliable case, we randomly shift the mouth ROI sequences in time
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Reliable lip motion Unreliable lip motion
SDR SIR SAR PESQ STOI SDR SIR SAR PESQ STOI

Audio-Only [252] 7.85 13.7 9.97 2.61 0.82 7.85 13.7 9.97 2.61 0.82
AV-Conv [3] 8.91 14.8 11.2 2.73 0.84 7.23 11.4 9.98 2.51 0.80

Ours (static face) 7.21 12.0 10.6 2.52 0.80 7.21 12.0 10.6 2.52 0.80
Ours (lip motion) 9.95 16.9 11.1 2.80 0.86 7.57 12.7 10.0 2.54 0.81

Ours 10.2 17.2 11.3 2.83 0.87 8.53 14.3 10.4 2.64 0.84

Table 5.1: Audio-visual speech separation results on the VoxCeleb2 dataset.
We show the performance separately for testing examples where the lip motion
is reliable (left) or unreliable (right). See text for details. Higher is better for
all metrics.

by up to 1s and occlude the lip region for up to 1s per segment during both

training and testing. These corruptions represent typical video artifacts (e.g.,

buffering lag) and mouth occlusions. Table 5.2 shows the speech enhancement

results. The setting is the same as Table 5.1 except that the mixture contains

additional background sounds (e.g., laughter, car engine, wind, etc.) sampled

from AudioSet. The visual feature of only the target speaker is used to guide

the separation for speech enhancement experiments.

Tables 5.1 and 5.2 show that in both scenarios, our method achieves

the best separation results. It outperforms AV-Conv [3] by a good margin.

The audio-only baseline benefits from our architecture design, and it has de-

cent performance, though note that unlike AV methods, it cannot assign the

separated speech to the corresponding speaker. We evaluate both possible

matchings and report its best results (to the baseline’s advantage). The abla-

tions show that separation with our model is possible purely using one static

face image, but it can be difficult especially when the facial attributes alone

are not reliable or distinctive enough to guide separation (see Fig. 5.6). Lip
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Reliable lip motion Unreliable lip motion
SDR SIR SAR PESQ STOI SDR SIR SAR PESQ STOI

Audio-Only [252] 3.56 10.9 5.71 2.00 0.66 3.56 10.9 5.71 2.00 0.66
AV-Conv [3] 5.32 11.9 7.52 2.20 0.71 3.99 9.43 6.92 2.02 0.67

Ours (static face) 3.48 8.43 6.91 1.96 0.68 3.48 8.43 6.91 1.96 0.68
Ours (lip motion) 6.31 13.3 7.72 2.32 0.76 4.21 9.78 6.85 2.03 0.69

Ours 6.55 13.7 7.84 2.34 0.77 4.95 11.0 7.02 2.12 0.72

Table 5.2: Audio-visual speech enhancement results on the VoxCeleb2 dataset
with audios from AudioSet used as non-speech background noise. Higher is
better for all metrics.

motion is directly correlated with the speech content and is much more infor-

mative for speech separation when reliable. However, the performance of the

lip motion-based model significantly drops when the lip motion is unreliable,

as often the case in real-world videos. Our VisualVoice approach combines

the complementary cues in both the lip motion and the face-voice embedding

learned with cross-modal consistency, and thus is less vulnerable to unreliable

lip motion.

5.2.3.2 Comparison to State-of-the-Art Methods

Table 5.3 compares our method to a series of state-of-the-art methods

on AV speech separation and enhancement. We use the same evaluation pro-

tocols and the same metrics. Our approach improves the state-of-the-art on

each of the five datasets.

Whereas Tables 5.1 and 5.2 use the exact same training sources for all

methods, here we rely on the authors’ reported results [5, 35,55] in the litera-

ture to make comparisons, which draw on different sources. In Table 5.3a-5.3c,
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Gabbay et al. [69] Hou et al. [104] Ephrat et al. [55] Ours
PESQ 2.25 2.42 2.50 2.51
STOI – 0.66 0.71 0.75
SDR – 2.80 6.10 6.69

(a) Results on Mandarin dataset.

Gabbay et al. [69] Ephrat et al. [55] Ours
SDR 0.40 4.10 10.9
PESQ 2.03 2.42 2.91

(b) Results on TCD-TIMIT dataset.

Casanovas et al. [26] Pu et al. [171] Ephrat et al. [55] Ours
SDR 7.0 6.2 12.6 13.3

(c) Results on CUAVE dataset.

Afouras et al. [3] Afouras et al. [5] Ours
SDR 11.3 10.8 11.8
PESQ 3.0 3.0 3.0

(d) Results on LRS2 dataset.

Chung et al. [35] Ours (static face) Ours
SDR 2.53 7.21 10.2

(e) Results on VoxCeleb2 dataset.

Table 5.3: Comparing to prior state-of-the-art methods on audio-visual speech
separation and enhancement. Baseline results are quoted from [5,35,55].

we evaluate on the Mandarin, TCD-TIMIT and CUAVE datasets using our

speaker-independent model trained on VoxCeleb2 to test the cross-dataset gen-

eralization capability of our model. Note that this setting is similar to [55],

where they also use a speaker-independent model trained on AV-Speech to test

on these datasets. In comparison, the other prior methods require training a
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speaker-dependent model for each speaker in the test dataset. Our model sig-

nificantly outperforms these methods, despite never seeing the speakers during

training. In Table 5.3d, we train and test on the LRS2 dataset following [5].

Our method consistently outperforms all these prior methods. Notably, in

Table 5.3e, our ablated static face model trained with cross-modal consistency

significantly improves the prior static image-based model FaceFilter [35] by

4.68 in SDR. This shows that the cross-modal speaker embeddings learned

through our VisualVoice framework can provide sufficient cues for separa-

tion, even without using any information on lip movements. This is important

for a wide range of scenarios (e.g., online social network platforms) where

videos containing lip motion are absent, but a user’s profile image is available

to use for separation.

5.2.3.3 Qualitative Results

Real-World Speech Separation: To further test our method’s success on

real-world videos with mixed speech, we run our model on a variety of real-

world test videos in various challenging scenarios including presidential de-

bates, zoom calls, interviews, noisy restaurants, etc.. Note that these videos

lack ground-truth, but can be manually checked for quality as shown in the

supplementary video5.

Best/Worst Performing Pairs: Fig. 5.6 illustrates the best and worst per-

forming pairs for speech separation using synthetic pairs for our static face

5http://vision.cs.utexas.edu/projects/VisualVoice/
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SIR = 22.9 SIR = 22.8SIR = 23.2

SIR = -10.5 SIR = -9.58SIR = -11.6

Figure 5.6: Qualitative examples of the best performing pairs (first row) and
worst performing pairs (second row) for our static-face image based model.

model. Pairs that perform the best tend to be very different in terms of facial

attributes like gender, age, and nationality (first row). Speech separation can

be hard if the two mixed identities are visually similar or the facial attributes

are hard to obtain from only a static face image due to occlusion or irregular

pose (second row).

To further understand when the cross-modal face-voice embeddings

help the most, we compare the per-pair performance of our model with only

lip motion and our full model in Fig. 5.7. The pairs with the largest improve-

ment from the cross-modal face-voice embeddings tend to be those that either

have very different facial appearances or whose lip motion cues are difficult to

extract (e.g., non-frontal views).
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SIR improvement: 8.1 SIR improvement: 7.2 SIR improvement: 6.5 

SIR improvement: 5.8 SIR improvement: 5.7 SIR improvement: 4.7 

Figure 5.7: Qualitative examples of the pairs with the largest improvement
from cross-modal face-voice embeddings.

5.2.4 Learned Cross-Modal Embeddings

Our multi-task learning framework jointly learns both speech separa-

tion and cross-modal face-voice embeddings. Our results thus far show how

the cross-modal embedding learning enhances speech separation, our primary

goal. As a byproduct of our AV speech separation framework, cross-modal

embedding learning may also benefit from the joint learning. Thus we next

evaluate the cross-modal verification task, in which the system must decide if

a given face and voice belong to the same person.

To compare with prior cross-modal learning work, we train and eval-

uate on the VoxCeleb1 dataset and compare with the following baselines:

1) Learnable-Pins [33]: A state-of-the-art cross-modal embedding learning

method. We directly quote their reported results and follow the same eval-

uation protocols and data splits to compare with our method; 2) Random:
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Seen-Heard Unseen-Unheard
AUC ↑ EER ↓ AUC ↑ EER ↓

Random 50.8 49.6 49.7 50.1
Learnable Pins [33] 73.8 34.1 63.5 39.2
Ours (single-task) 75.0 32.2 72.4 34.7

Ours 84.9 23.6 74.2 32.3

Table 5.4: Cross-modal verification results on the VoxCeleb1 dataset. ↓ lower
better, ↑ higher better.

Embeddings extracted from a randomly initialized network of the same archi-

tecture as our method; 3) Ours (single-task): Our cross-modal embedding

network without jointly training for speech separation.

Table 5.4 shows the results. We use standard metrics for verifica-

tion, i.e., area under the ROC curve (AUC) and equal error rate (EER).

Our cross-modal embedding network alone compares favorably with [33] on

seen-heard speakers and generalizes much better to unseen-unheard speak-

ers. When trained with speech separation in a multi-task setting, our method

achieves large gains, demonstrating that our idea to jointly train for these two

tasks is beneficial to learn more reliable cross-modal face-voice embeddings.

To visualize that our VisualVoice framework has indeed learned use-

ful cross-modal face-voice embeddings, Figure 5.8 shows the t-SNE [149] em-

beddings of the voices for 15 random speakers from the VoxCeleb1 test set. The

embeddings are extracted from our vocal attributes analysis network jointly

trained with speech separation. The two sub-figures are color-coded with gen-
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Figure 5.8: Our learned cross-modal embeddings of voices for 15 speakers from
the VoxCeleb1 test set visualized with t-SNE. The two figures are color coded
with gender and identity, respectively.

der and identity, respectively. Our method’s learned voice embeddings tend

to cluster speakers of the same cross-modal attributes together despite having

access to no identity labels and no attribute labels during training.

5.3 Broader Impact

We are conscious of possible undesirable effects that can arise when

working with data-driven approaches to human understanding in images and

video. Specifically, a method’s training data will guide the extent to which

the model can generalize well and fairly to arbitrary inputs. To mitigate risks

in this regard, we have taken several steps. First, we learn the cross-modal

face-voice embeddings from the VoxCeleb2 dataset, which to our knowledge

is the largest relevant available dataset with over 6,000 speakers spanning

a range of different ethnicities, accents, professions, and ages. Second, we

examine the speech separation results separately for a seen-heard test set

and a unseen-unheard test set from VoxCeleb2 (see [78]) The results show
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our method achieves similar performance for seen-heard and unseen-unheard

speakers. This shows that our model generalizes well to unseen-unheard speak-

ers in VoxCeleb2 and is not limited to handling seen-heard speakers in the

training data.

Finally, the output of our model consists of voices separated from the

the original test video—in terms of masking the input spectrogram—as op-

posed to being generated or machine synthesized. This is important because

it means our model is not free to hallucinate arbitrary voice sounds for the in-

put speakers, e.g., the model cannot artificially conjure sounds or words often

associated with training faces that happen to look like the input speaker unless

they are consistent with the input sounds. Indeed, as shown in Sec. 5.2.3, lip

motion continues to play a key role during speech separation, isolating words

based on their visual agreement with what was physically spoken. The learned

cross-modal face-voice embeddings complement lip motion cues to further en-

hance the separation results, particularly when lip motion is harder to read or

the two input faces are very different in appearance.

To further explore the model’s performance as a function of a person’s

race, gender, ethnicity, or other identity data, it would be interesting to sort re-

sults by the relative impact of our model along each dimension independently.

However, existing meta-data does not permit this study (VoxCeleb2 only pro-

vides identity and gender labels). We hope to analyze the per-category perfor-

mance of our models for these cross-modal speaker attributes when datasets

as such meta-data and/or new dataset efforts become available.
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5.4 Conclusions

In this chapter, I presented an audio-visual speech separation frame-

work that simultaneously learns cross-modal speaker embeddings and speech

separation in a multi-task setting. I extend the co-separation framework dis-

cussed in Chapter 4 to incorporate motion analysis for instance-level source

separation of human speakers. Our VisualVoice approach exploits the com-

plementary cues between the lip motion and cross-modal facial attributes.

The cross-modal face-to-voice matching task and the speech separation task

are mutually beneficial. We achieve state-of-the-art results on audio-visual

speech separation and generalizes well to challenging real-world videos.

I have introduced several of my efforts in the previous three chapters

to leverage the audio-visual correspondence of semantic objects for a classic

audio task: audio source separation. In the next chapter, I also use audio as a

semantic signal, but for a classic computer vision problem: action recognition.
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Chapter 6

Action Recognition by Previewing Audio

1In the previous three chapters, I presented my approaches to audio-

visual source separation, leveraging audio-visual correspondence of semantic

objects in videos. While the visual appearance of objects can help to separate

the sounds they make, audio and its associated semantic meaning in turn

can also be informative to identify visual events in videos. In this chapter, I

propose to use audio as a semantic signal for a classic vision problem: action

recognition. This work was published in CVPR 2020 [80].

With the growing popularity of portable image recording devices as well

as online social platforms, internet users are generating and sharing an ever-

increasing number of videos every day. According to a recent study, it would

take a person over 5 million years to watch the amount of video that will be

crossing global networks each month in 2021 [1]. Therefore, it is imperative to

devise systems that can recognize actions and events in these videos both ac-

1The work in this chapter was supervised by Prof. Kristen Grauman and Prof. Lorenzo
Torresani. It was originally published in: “Listen to Look: Action Recognition by Preview-
ing Audio”. Ruohan Gao, Tae-Hyun Oh, Kristen Grauman, and Lorenzo Torresani. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Virtual, June 2020.
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curately and efficiently. Potential benefits extend to many video applications,

including video recommendation, summarization, editing, and browsing.

Recent advances in action recognition have mostly focused on build-

ing powerful clip-level models operating on short time windows of a few sec-

onds [25, 57, 58, 194, 209, 232]. To recognize the action in a test video, most

methods densely apply the clip classifier and aggregate the prediction scores

of all the clips across the video. Despite encouraging progress, this approach

becomes computationally impractical in real-world scenarios where the videos

are untrimmed and span several minutes or even hours.

We contend that processing all frames or clips in a long untrimmed

video may be unnecessary and even counter-productive. Our key insight is

that there are two types of redundancy in video, manifested in both short-

term clips as well as long-term periods. First, there is typically high temporal

redundancy across the entire video (Fig. 6.1). Many clips capture the same

event repetitively, suggesting it is unnecessary to process all the clips. Second,

there is redundancy even within a clip: the visual composition within a short

time span does not change abruptly; temporally adjacent frames are usually

very similar, though there are temporal dynamics (motion) across frames.

Therefore, it can be wasteful to process all clips and frames, especially when

the video is very long. Moreover, for many activities, the actual actions taking

place in the video can be very sparse. It is often a few important moments

that are useful for recognition, while the rest actually distract the classifier.

For example, in a typical video of surfing, a person might talk for a long time
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Skip

Image-Audio pairs

Video clips for an untrimmed video

Skip

Figure 6.1: Our approach learns to use audio as an efficient preview of the
accompanying visual content, at two levels. First we replace the costly analysis
of video clips with a more efficient processing of image-audio pairs. A single
image captures most of the appearance information within the clip, while the
audio provides important dynamic information. Then our video skimming
module selects the key moments (a subset of image-audio pairs) to perform
efficient video-level action recognition.

and prepare the equipment before he/she begins to surf.

Our idea is to use audio as an efficient video preview to reduce both

the clip-level and the video-level redundancy in long untrimmed videos. First,

instead of processing a whole video clip, we propose an ImgAud2Vid teacher-

student distillation framework to hallucinate a video descriptor (e.g., an ex-

pensive 3D CNN feature vector) from a single video frame and its accom-

panying audio. Based on our lightweight image-audio network, we further

propose a novel attention-based long short-term memory (LSTM) network,
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called ImgAud-Skimming, which scans through the entire video and selects

the key moments for the final video-level recognition. Both ideas leverage

audio as a fast preview of the full video content. Our distilled image-audio

model efficiently captures information over short extents, while the skimming

module performs fast long-term modeling by skipping over irrelevant and/or

uninformative segments across the entire video.

Audio has ideal properties to aid efficient recognition in long untrimmed

videos: audio contains dynamics and rich contextual temporal information [83]

and, most importantly, it is much more computationally efficient to process

compared to video frames. For example, as shown in Fig. 6.1, within a short

clip of the action chopping wood, a single frame includes most of the appear-

ance information contained in the clip, i.e., {person, axe, tree}, while the

accompanying audio (the sound of the axe hitting the tree in this case) con-

tains useful cues of temporal dynamics. Across the entire video, audio can

also be beneficial to select the key moments that are useful for recognition.

For example, the sound of the person talking initially can suggest that the

actual action has not started, while the sound of the electric saw may indicate

that the action is taking place. Our approach automatically learns such audio

signals.

We experiment on four datasets (Kinetics-Sounds, Mini-Sports1M, Ac-

tivityNet, UCF-101) and demonstrate the advantages of our framework. Our

main contributions are threefold. Firstly, we are the first to propose to replace

the expensive extraction of clip descriptors with an efficient proxy distilled
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from audio. Secondly, we propose a novel video-skimming mechanism that

leverages image-audio indexing features for efficient long-term modeling in

untrimmed videos. Thirdly, our approach pushes the envelope of the trade-off

between accuracy and speed favorably; we achieve state-of-the-art results on

action recognition in untrimmed videos with few selected frames or clips.

In Sec 6.1, I describe our co-separation approach for learning audio-

visual source separation. Then I present key experiments and results in Sec 6.2.

6.1 Approach

Our goal is to perform accurate and efficient action recognition in long

untrimmed videos. We first formally define our problem (Sec. 6.1.1); then

we introduce how we use audio as a clip-level preview to hallucinate video

descriptors based on only a single static frame and its accompanying audio

segment (Sec. 6.1.2); finally we present how we leverage image-audio indexing

features to obtain a video-level preview, and learn to skip over irrelevant or

uninformative segments in untrimmed videos (Sec. 6.1.3).

6.1.1 Problem Formulation

Given a long untrimmed video V , the goal of video classification is to

classify V into a predefined set of C classes. Because V can be very long, it is

often intractable to process all the video frames together through a single deep

network due to memory constraints. Most current approaches [25,57,121,173,

194, 209, 210, 232] first train a clip-classifier Ω(·) to operate on a short fixed-
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length video clip V ∈ RF×3×H×W of F frames with spatial resolution H ×W ,

typically spanning several seconds. Then, given a test video of arbitrary length,

these methods densely apply the clip-classifier to N clips {V1,V2, . . . ,VN}

which are taken at a fixed hop size across the entire video. The final video-

level prediction is obtained by aggregating the clip-level predictions of all N

clips.

Such paradigms for video recognition are highly inefficient at two levels:

(1) clip-level—within each short clip V, temporally close frames are visually

similar, and (2) video-level—across all the clips in V , often only a few clips

contain the key moments for recognizing the action. Our approach addresses

both levels of redundancy via novel uses of audio.

Each video clip V is accompanied by an audio segment A. The starting

frame I among the F frames within the short clip V usually contains most of

the appearance cues already, while the audio segment A contains rich contex-

tual temporal information (recall the wood cutting example in Fig. 6.1). Our

idea is to replace the powerful but expensive clip-level classifier Ω(·) that takes

F frames as input with an efficient image-audio classifier Φ(·) that only takes

the starting frame I and its accompanying audio segment A as input, while

preserving the clip-level information as much as possible. Namely, we seek to

learn Φ(·) such that

Ω(Vj) ≈ Φ(Ij,Aj), j ∈ {1, 2, . . . , N}, (6.1)

for a given pre-trained clip-classifier Ω(·). In Sec. 6.1.2, we design an Im-

gAud2Vid distillation framework to achieve this goal. Through this step, we
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replace the processing of high-dimensional video clips {V1,V2, . . . ,VN} with a

lightweight model analyzing compact image-audio pairs {(I1,A1), (I2,A2), . . . , (IN ,AN)}.

Next, building on our efficient image-audio classifier Φ(·), to address

video-level redundancy we design an attention-based LSTM network called

ImgAud-Skimming. Instead of classifying every image-audio pair using Φ(·)

and aggregating all their prediction results, our ImgAud-Skimming frame-

work iteratively selects the most useful image-audio pairs. Namely, our method

efficiently selects a small subset of T image-audio pairs from the entire set of

N pairs in the video (with T � N) and only aggregates the predictions from

these selected pairs. We present our video skimming mechanism in Sec. 6.1.3.

6.1.2 Clip-Level Preview

We present our approach to perform efficient clip-level recognition

and our ImgAud2Vid distillation network architecture. As shown in Fig. 6.2,

the clip-based model takes a video clip V of F frames as input and based on

that video volume generates a clip descriptor zV of dimensionality D. A fully-

connected layer is used to make predictions among the C classes in Kinetics.

For the student model, we use a two-stream network: the image stream takes

the first frame I of the clip as input and extracts an image descriptor zI; the

audio stream takes the audio spectrogram A as input and extracts an audio

feature vector zA. We concatenate zI and zA to generate an image-audio

feature vector of dimensionality D using a fusion network Ψ(·) that consists

of two fully-connected layers. A final fully-connected layer is used to produce
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Figure 6.2: ImgAud2Vid distillation framework: The teacher model is a
video-clip classifier, and the student model consists of a visual stream that
takes the starting frame of the clip as input and an audio stream that takes
the audio spectrogram as input. By processing only a single frame and the
clip’s audio, we get an estimate of what the expensive video descriptor would
be for the full clip.

a C-class prediction like the teacher model.

The teacher model Ω(·) returns a softmax distribution over C classifi-

cation labels. These predictions are used as soft targets for training weights

associated with the student network Φ(·) using the following objective:

LKL = −
∑

{(V,I,A)}

∑
c
Ωc(V) log Φc(I,A), (6.2)

where Ωc(V) and Φc(I,A) are the softmax scores of class c for the teacher

model and the student model, respectively. We further impose an L1 loss on
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the clip descriptor zV and the image-audio feature to regularize the learning

process:

L1 =
∑

{(zV,zI,zA)}
‖zV −Ψ(zI, zA)‖1. (6.3)

The final learning objective for ImgAud2Vid distillation is a combination of

these two losses:

LDist. = L1 + λLKL, (6.4)

where λ is the weight for the KL divergence loss. The training is done over the

image and audio student networks (producing representations zI and zA, re-

spectively) and the fusion model Ψ(·) with respect to a fixed teacher video-clip

model. The teacher model we use is a R(2+1)D-18 [210] video-clip classifier,

which is pre-trained on Kinetics [123]. Critically, processing the audio for a clip

is substantially faster than processing all its frames, making audio an efficient

preview. See Sec. 6.2.1 for cost comparisons. After distillation, we fine-tune

the student model on the target dataset to perform efficient clip-level action

recognition.

6.1.3 Video-Level Preview

ImgAud2Vid distills knowledge from a powerful clip-based model to

an efficient image-audio based model. Next, we introduce how we leverage

the distilled image-audio network to perform efficient video-level recognition.

Recall that for long untrimmed video, processing only a subset of clips is

desirable both for speed and accuracy, i.e., to ignore irrelevant content.

We design ImgAud-Skimming, an attention-based LSTM network
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Figure 6.3: Our ImgAud-Skimming network is an LSTM network that inter-
acts with the sequences of image and audio indexing features to select where
to “look at” and “listen to” next. At each time step, it takes the image fea-
ture and audio feature for the current time step as well as the previous hidden
state and cell output as input, and produces the current hidden state and cell
output. The hidden state for the current time step is used to make predic-
tions about the next moment to focus on in the untrimmed video through the
querying operation illustrated in Fig. 6.4. The average-pooled ImgAud2Vid
features of all selected time steps is used to make the final prediction of the
action in the video.

(Fig. 6.3), which interacts with the sequence of image-audio pairs {(I1,A1), (I2,A2),

. . . , (IN ,AN)}, whose features are denoted as {zI
1, z

I
2, . . . , z

I
N} and {zA

1 , z
A
2 , . . . , z

A
N},

respectively. At the t-th time step, the LSTM cell takes the indexed image

feature z̃I
t and the indexed audio feature z̃A

t , as well as the previous hidden

state ht−1 and the previous cell output ct−1 as input, and produces the current

hidden state ht and the cell output ct:

ht, ct = LSTM
(
Ψ(z̃I

t , z̃
A
t ),ht−1, ct−1

)
, (6.5)

where Ψ(·) is the same fusion network used in ImgAud2Vid with the same

parameters. To fetch the indexed features z̃I
t and z̃A

t from the feature se-

quences, an indexing operation is required. This operation is typically non-
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differentiable. Instead of relying on approximating policy gradients as in prior

work [56,240,242], we propose to deploy a differentiable soft indexing mecha-

nism, detailed below.

We predict an image query vector qI
t and an audio query vector qA

t

from the hidden state ht at each time step through two prediction networks

QueryI(·) and QueryA(·). The query vectors, qI
t and qA

t , are used to query

the respective sequences of image indexing features {zI
1, z

I
2, . . . , z

I
N} and audio

indexing features {zA
1 , z

A
2 , . . . , z

A
N}. The querying operation is intended to

predict which part of the untrimmed video is more useful for recognition of

the action in place and decide where to “look at” and “listen to” next. It

is motivated by attention mechanisms [92, 205, 216, 221], but we adapt this

scheme to the problem of selecting useful moments for action recognition in

untrimmed video.

Figure 6.4 illustrates our querying mechanism. First, we use one fully-

connected layer Key(·) to transform indexing features z to indexing keys k.

Then, we get an attention score k>q√
d

for each indexing key in the sequence,

where d is the dimensionality of the key vector. A Softmax layer normalizes

the attention scores and generates an attention weight vector w by:

w = Softmax
( [k1k2 . . .kN ]> · q√

d

)
, (6.6)

where kj = Key(zj), j ∈ {1, 2, . . . , N}.

At each time step t (we omit t for simplicity if deducible), one could

obtain the frame index for the next time step by arg max(w). However, this op-
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Figure 6.4: Attention-based frame selection mechanism.

eration is not differentiable. Instead of directly using the image and audio fea-

tures of the selected frame index, we use the weighted average of the sequence of

indexing features to generate an aggregated feature vector z̃I
t+1 = IndexI(wt)

and z̃A
t+1 = IndexA(wt) as input to the fusion network Ψ(·), where

IndexI(w) :=
∑N

j=1wjz
I
j,

IndexA(w) :=
∑N

j=1wjz
A
j , wj∈{1,··· ,N} ∈ R+.

(6.7)

The querying operations are performed independently on the visual

and audio modalities, and produce distinct weight vectors wI
t and wA

t to find

the visually-useful and acoustically-useful moments, respectively. These two

weight vectors may give importance to different moments in the sequence.

We fuse this information by dynamically adjusting how much to rely on each

112



modality at each step. To this end, we predict two modality scores sIt and

sAt , from the hidden state ht through a two-way classification layer. sIt and

sAt (sIt , s
A
t ∈ [0, 1], sIt + sAt = 1) indicate how much the system decides to

rely on the visual modality versus the audio modality, respectively, at time

step t. Then, the image and audio feature vectors for the next time step are

finally obtained by aggregating the feature vectors predicted both visually and

acoustically, as follows:

z̃I
t+1 = sIt · IndexI(wI

t) + sAt · IndexI(wA
t ),

z̃A
t+1 = sIt · IndexA(wI

t) + sAt · IndexA(wA
t ).

(6.8)

Motivated by iterative attention [154], we repeat the above procedure

for T steps, and average the image-audio features obtained. Namely,

m = 1
T

∑T
j=1Ψ(z̃I

j, z̃
A
j ). (6.9)

m is a feature summary of the useful moments selected by ImgAud-Skimming.

A final fully-connected layer followed by Softmax(·) takes m as input and

makes predictions of action categories. The network is then trained with cross-

entropy loss and video-level action label annotations.

While we optimize the ImgAud-Skimming network for a fixed number

of T steps during training, at inference time we can stop early at any step

depending on the computation budget. Moreover, instead of using all indexing

features, we can also use a subset of indexing features to accelerate inference

with the help of feature interpolation. See Sec. 6.2.2 for details about the

efficiency and accuracy trade-off when using sparse indexing features and early

stopping.
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Figure 6.5: We train on Kinetics [123] and evaluate on four other datasets:
Kinetics-Sounds [13] (a subset of Kinetics), UCF-101 [200], ActivityNet [24],
and Mini-Sports1M [121].

6.2 Experiments

Using a total of four datasets, we evaluate our approach for accurate

and efficient clip-level action recognition (Sec. 6.2.1) and video-level action

recognition (Sec. 6.2.2).

Datasets: Our distillation network is trained on Kinetics [123], and we

evaluate on four other datasets: Kinetics-Sounds [13], UCF-101 [200], Ac-

tivityNet [24], and Mini-Sports1M [121]. See Fig. 6.5.

• Kinetics-Sounds is a subset of Kinetics and consists of only action

classes that are potentially recognizable both visually and aurally. It is
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assembled by [13] and consists of 34 classes. However, 3 classes were re-

moved from the original Kinetics dataset. Therefore, we use the remain-

ing 31 classes in our experiments. The 31 action classes are: blowing

nose, blowing out candles, bowling, chopping wood, dribbling basket-

ball, laughing, mowing lawn, playing accordion, playing bagpipes, play-

ing bass guitar, playing clarinet, playing drums, playing guitar, playing

harmonica, playing keyboard, playing organ, playing piano, playing sax-

ophone, playing trombone, playing trumpet, playing violin, playing xylo-

phone, ripping paper, shoveling snow, shuffling cards, singing, stomping

grapes, tap dancing, tapping guitar, tapping pen, and tickling.

• UCF-101 is a dataset of about 13K short trimmed clips of 101 human

actions. We use the official training/validation/testing splits (split1) in

our experiments.

• ActivityNet contains videos of various lengths with average duration

of 117 seconds. We use the latest release (version 1.3), which con-

sists of around 20K videos of 200 classes. We use the official train-

ing/validation/testing splits in our experiments.

• Mini-Sports1M is a subset of Sports1M dataset containing an equal

number of videos for each class. It is assembled by us to facilitate com-

parisons of video-level action recognition following [131]. We only take

videos of length 2-5 mins, and randomly sample 30 videos for each class

for training, and 10 videos for each class for testing.
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Kinetics-Sounds and UCF-101 contain only short trimmed videos, so

we only test on them for clip-level recognition; ActivityNet contains videos

of various lengths, so it is used as our main testbed for both clip-level and

video-level recognition; Mini-Sports1M contains only long untrimmed videos,

and we use it for evaluation of video-level recognition.

Implementation Details: We implement in PyTorch. For ImgAud2Vid,

the R(2+1)D-18 [210] teacher model takes 16 frames of size 112 × 112 as

input. The student model uses a ResNet-18 network for both the visual and

audio streams, which take the starting RGB frame of size 112 × 112 and a

1-channel audio-spectrogram of size 101× 40 (1 sec. audio segment) as input,

respectively. We use λ = 100 for the distillation loss in Equation 6.4. For

ImgAud-Skimming, we use a one-layer LSTM with 1,024 hidden units and

a dimension of 512 for the indexing key vector. We use T = 10 time steps

during training. See [80] for details.

6.2.1 Clip-Level Action Recognition

First, we directly evaluate the performance of the image-audio network

distilled from the video model. We fine-tune on each of the three datasets for

clip-level recognition and compare against the following baselines:

• Clip-based Model: The R(2+1)D-18 [210] teacher model.

• Image-based Model (distilled/undistilled): A ResNet-18 frame-based

model. The undistilled model is pre-trained on ImageNet, and the distilled
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model is similar to our method except that the distillation is performed

using only the visual stream.

• Audio-based Model (distilled/undistilled): The same as the image-

based model except here we only use the audio stream for recognition and

distillation. The model is pre-trained on ImageNet to accelerate conver-

gence.

• Image-Audio Model (undistilled): The same image-audio network as

our method but without distillation.

For each baseline, we use the corresponding model as initialization

and fine-tune on the same target dataset for clip-based action recognition.

Note that our purpose here is not to compete on recognition accuracy using

R(2+1)D-18 (or any other expensive video features), but rather to demonstrate

our distilled image-audio features can approximate its recognition accuracy

much more efficiently.

Figure 6.6 compares the accuracy vs. efficiency for our approach and the

baselines. Our distilled image-audio network achieves accuracy comparable to

that of the clip-based teacher model, but at a much reduced computational

cost. Moreover, the models based on image-only or audio-only distillation

produce lower accuracy. This shows that the image or audio alone is not

sufficient to hallucinate the video descriptor, but when combined they provide

sufficiently complementary information to reduce the accuracy gap with the

true (expensive) video-clip descriptor.
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Figure 6.6: Clip-level action recognition on Kinetics-Sounds, UCF-101, and
ActivityNet. We compare the recognition accuracy and the computational
cost of our model against a series of baselines. Our ImgAud2Vid approach
strikes a favorable balance between accuracy and efficiency.

To understand when audio helps the most, we compute the L1 distance

of the hallucinated video descriptor to the ground-truth video descriptor by

our ImgAud2Vid distillation and the image-based distillation. As shown in

Fig. 6.7, the top-ranked clips (first row) for which we best match the ground-

truth tend to be dynamic scenes that have informative audio information,

e.g., grinding meat, jumpstyle dancing, playing cymbals, playing bagpipes,

wrestling and welding. The bottom-ranked clips (second row) tend to be clips

where the audio either contains just silence, narration, and background music,

or are too difficult to perceive, e.g., answering questions, bee keeping, clay

pottery making, getting a haircut, tossing coin and extinguishing fire.
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Figure 6.7: Top-ranked/bottom-ranked clips where audio helps the most/least
for our ImgAud2Vid distillation. The top-ranked clips (first row) belong
to classes: grinding meat, jumpstyle dancing, playing cymbals, playing bag-
pipes, wrestling and welding; The bottom-ranked clips (second row) belong
to classes: answering questions, bee keeping, clay pottery making, getting a
haircut, tossing coin and extinguishing fire.

6.2.2 Untrimmed Video Action Recognition

Having demonstrated the clip-level performance of our distilled image-

audio network, we now examine the impact of the ImgAud-Skimming mod-

ule on video-level recognition. We evaluate on ActivityNet [24] and Mini-

Sports1M [121], which contain long untrimmed videos.

Efficiency & Accuracy Trade-off: Before showing the results, we intro-

duce how we use feature interpolation to further enhance the efficiency of our

system. Apart from using features from all N time stamps as described in

Sec. 6.1.3, we experiment with using sparse indexing features extracted from a

subset of image-audio pairs, i.e., subsampling along the time axis. Motivated

by the locally-smooth action feature space [50] and based on our empirical ob-

servation that neighboring video features can be linearly approximated well,

we synthesize the missing image and audio features by computationally cheap
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Figure 6.8: Trade-off between efficiency and accuracy when using sparse index-
ing features or early stopping on ActivityNet. Uniform denotes the Uniform
baseline in Table 6.1.

linear interpolation to generate the full feature sequences of length N . Fig-

ure 6.8a shows the recognition results when using different subsampling factors.

We can see that recognition remains robust to even aggressive subsampling of

the indexing features.

Next we investigate early stopping as an additional means to reduce

the computational cost. Instead of repeating the skimming procedure for 10

times as in the training stage, we can choose to stop early after a few recurrent

steps. Figure 6.8b shows the results when stopping at different time steps. We

can see that the first three steps yield sufficient cues for recognition. This

suggests that we can stop around the third step with negligible accuracy loss.

See [80] for a similar observation on Mini-Sports1M.

Results: We compare our approach to the following baselines and several

existing methods [56,131,240,242,250]:

• Random: We randomly sample 10 out of the N time stamps, and average
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the predictions of the image-audio pairs from these selected time stamps

using the distilled image-audio network.

• Uniform: The same as the previous baseline except that we perform uni-

form sampling.

• Front / Center / End: The same as before except that the first / center

/ last 10 time stamps are used.

• Dense: We average the prediction scores from all N image-audio pairs as

the video-level prediction.

• SCSampler [131]: We use the idea of [131] and select the 10 image-audio

pairs that yield the largest confidence scores from the image-audio classifier.

We average their predictions to produce the video-level prediction.

• LSTM: This is a one-layer LSTM as in our model but it is trained and

tested using all N image-audio features as input sequentially to predict the

action label from the hidden state of the last time step.

• Non-Recurrent: The same as our method except that we only use a

single query operation without the recurrent iterations. We directly obtain

the 10 time stamps from the indexes of the 10 largest attention weights.

Table 6.1 shows the results. Our method outperforms all the baselines.

The low accuracy of Random / Uniform / Front / Center / End in-

dicates the importance of the context-aware selection of useful moments for

action recognition. Using sparse indexing features (with a subsampling factor

of 5), our method outperforms Dense (the status quo of how most current

methods obtain video-level predictions) by a large margin using only about 1/5
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Random Uniform Front Center End SCSampler [131] Dense LSTM Non-Recurrent Ours (sparse / dense)
ActivityNet 63.7 64.8 39.0 59.0 38.1 69.1 66.3 63.5 67.5 70.3 / 71.1

Mini-Sports1M 35.4 35.6 17.1 29.7 17.4 38.4 37.3 34.1 38.0 39.2 / 39.9

Table 6.1: Video-level action recognition accuracy (in %) on ActivityNet (#
classes: 200) and Mini-Sports1M (# classes: 487). Kinetics-Sounds and UCF-
101 consist of only short trimmed videos, so they are not applicable here. Our
method consistently outperforms all baseline methods. Ours (sparse) uses only
about 1/5 the computation cost of the last four baselines, while achieving large
accuracy gains. See Table 6.2 for more computation cost comparisons.

of its computation cost. Our method is also better and faster than SCSam-

pler [131], despite their advantage of densely evaluating prediction results on

all clips. LSTM performs comparably to Random. We suspect that it fails

to aggregate the information of all time stamps when the video gets very long.

Non-Recurrent is an ablated version of our method, and it shows that the

design of recursive prediction of the “next” interesting moment in our method

is essential. Both LSTM and Non-Recurrent support our contribution as

a whole framework, i.e., iterative attention based selection.

Comparison to State-of-the-Art Frame Selection Methods: Fig. 6.9

compares our approach to state-of-the-art frame selection methods given the

same computational budget. The results of the baselines are quoted from

AdaFrame [242] and MultiAgent [240], where they both evaluate on Activi-

tyNet. For fair comparison, we test a variant of our method with only the

visual modality, and we use the same ResNet-101 features for recognition.

Our framework also has the flexibility of using cheaper features for indexing

(frame selection). See [80] for details about the single-modality architecture

of our ImgAud-Skimming network and how we use different features for in-
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Figure 6.9: Comparisons with other frame selection methods on ActivityNet.
We directly quote the numbers reported in AdaFrame [242] and MultiA-
gent [240] for all the baseline methods and compare the mAP against the
average GFLOPs per test video. See text for details.

dexing and recognition. We use three different combinations denoted as Ours

(“indexing features” | “recognition features”) in Fig. 6.9, including using Mo-

bileNetv2 [188] features for efficient indexing similar to [242]. Moreover, to

gauge the impact of our ImgAud2Vid step, we also report the results ob-

tained by using image-audio features for recognition.

Our method consistently outperforms all existing methods and achieves

the best balance between speed and accuracy when using the same recognition

features, suggesting the accuracy boost can be attributed to our novel differ-

entiable indexing mechanism. Furthermore, with the aid of ImgAud2Vid dis-

tillation, we achieve much higher accuracy with much less computation cost;
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Backbone Pre-trained Accuracy mAP
IDT [226] – ImageNet 64.7 68.7
C3D [209] – Sports1M 65.8 67.7
P3D [173] ResNet-152 ImageNet 75.1 78.9
RRA [267] ResNet-152 ImageNet 78.8 83.4
MARL [240] ResNet-152 ImageNet 79.8 83.8
Ours ResNet-152 ImageNet 80.3 84.2

(a) Comparison to prior work with ResNet-152 features.

Indexing Recognition mAP TFLOPs
Dense – R(2+1)D-152 88.9 25.9
Uniform – R(2+1)D-152 87.2 1.26
Ours Image-Audio R(2+1)D-152 88.5 1.31
Ours R(2+1)D-152 R(2+1)D-152 89.9 2.64

(b) Accuracy vs. Efficiency with R(2+1)D-152 features.

Table 6.2: ActivityNet comparison to SOTA methods.

this scheme combines the efficiency of our image-audio clip-level recognition

with the speedup and accuracy enabled by our ImgAud-Skimming network

for video-level recognition.

Comparison to the State-of-the-Art on ActivityNet: Having com-

pared our skimming approach to existing methods for frame selection, now we

compare to state-of-the-art activity recognition models that forgo frame selec-

tion. For fair comparison, we use the ResNet-152 model provided by [240].

This model is pre-trained on ImageNet and fine-tuned on ActivityNet with

TSN-style [229] training. As shown in Table 6.2a, our method consistently
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outperforms all the previous state-of-the-art methods. To show that the bene-

fits of our method extend even to more powerful but expensive features, we use

R(2+1)D-152 features for recognition in Table 6.2b. When using R(2+1)D-152

features for both indexing and recognition, we outperform the dense approach

while being 10× faster. We can still achieve comparable performance to the

dense approach if using our image-audio features for indexing, while being 20×

faster.

6.2.3 Qualitative Analysis

Figure 6.10 shows frames selected by our method using the visual

modality versus those obtained by uniform sampling. The frames chosen by

our method are much more informative of the action in the video compared to

those uniformly sampled. See Supp. video2 for examples of acoustically useful

moments selected by our method.

We can inspect per-class performance to understand what are the classes

that benefit the most from our skimming mechanism compared to uniform

sampling. The top classes in descending order of accuracy gain are: cleaning

sink, beer pong, gargling mouthwash, painting furniture, archery, laying tile,

and triple jump—classes where the action is sporadic and is often exhibited

over a short segment of the video. See [80] for more analysis.

2http://vision.cs.utexas.edu/projects/listen_to_look/
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Figure 6.10: Qualitative examples of 5 uniformly selected moments and the
first 5 visually useful moments selected by our method for two videos of the
actions throwing discus and rafting in ActivityNet. The frames selected by
our method are more indicative of the corresponding action. See the supple-
mentary video2 for examples of acoustically useful moments selected by our
method.

6.3 Conclusions

In this chapter, I presented an approach to achieve both accurate and

efficient action recognition in long untrimmed videos by leveraging audio as

a previewing tool. Our ImgAud2Vid distillation framework replaces the ex-

pensive clip-based model by a lightweight image-audio based model, enabling

efficient clip-level action recognition. Moreover, we propose an ImgAud-

Skimming network that iteratively selects useful image-audio pairs, enabling

efficient video-level action recognition. Our work strikes a favorable balance

126



between speed and accuracy, and we achieve state-of-the-art results for video

action recognition using few selected frames or clips.

However, the current framework cannot handle cases where multiple

actions are happening in an untrimmed video. It would be important future

work to consider multi-label video action classification by adapting the video-

preview module to select useful moments for each individual action category.

Moreover, we separately train the clip-based model and the video-level model

in two stages. It would be interesting to train an end-to-end model that simul-

taneously performs cross-modal distillation and video-level action recognition.

So far, my work presented in this dissertation use audio as a semantic

signal. My approaches recognize objects based on their appearance without

explicitly paying attention to their spatial locations. However, both audio and

visual data also convey significant spatial information. Starting from the next

chapter, I will present my work on leveraging audio as a spatial signal for

audio-visual learning.

127



Chapter 7

Visually-Guided Audio Spatialization

1The audio-visual source separation and action recognition tasks pre-

sented so far center around learning sounds associated with objects or events

and their semantics. In this chapter, I study the problem of audio spatial-

ization, which further requires reasoning about objects’ locations. I devise an

approach that learns to decode the monaural (single-channel) soundtrack into

its binaural counterpart by injecting visual information about object and scene

configurations. This work was published in CVPR 2019 [76].

The human auditory system uses two ears to extract individual sound

sources from a complex mixture. Accordingly, to mimic human hearing, bin-

aural audio is usually recorded using two microphones attached to the two

ears of a dummy head (see Fig. 7.2). The rig’s two microphones, their spac-

ing, and the physical shape of the ears are all significant for approximating

how humans receive sound signals. As a result, when playing binaural au-

1The work in this chapter was supervised by Prof. Kristen Grauman and was originally
published in: “2.5D Visual Sound”. Ruohan Gao and Kristen Grauman. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach,
CA, June 2019.
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mono audio 2.5D visual sound
(predicted binaural audio)

visual spatial information

Mono2Binaural

Figure 7.1: Binaural audio creates a 3D soundscape for listeners, but such
recordings remain rare. The proposed approach infers 2.5D visual sound by
injecting the spatial information contained in the video frames accompanying
a typical monaural audio stream.

dio through headphones, listeners feel the 3D sound sensation of being in the

place where the recording was made and can easily localize the sounds. The

immersive spatial sound is valuable for audiophiles, AR/VR applications, and

social video sharers alike.

However, binaural recordings are difficult to obtain in daily life due to

the high price of the recording device and the required expertise. Consumer-

level cameras typically only record monaural audio with a single microphone,

or stereo audio recorded using two microphones with arbitrary arrangement

and without physical representation of the pinna (outer ear). We contend that

for both machines and people, monaural or even stereo auditory input has very

limited dimension. Monaural audio collapses all independent audio streams to
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the same spatial point, and the listener cannot sense the spatial locations of

the sound sources.

Our key insight is that video accompanying monaural audio has the

potential to unlock spatial sound, lifting a flat audio signal into what we

call “2.5D visual sound”. Although a single channel audio track alone does

not encode any spatial information, its accompanying visual frames do contain

object and scene configurations. For example, as shown in Fig. 7.1, we observe

from the video frame that a man is playing the piano on the left and a man

is playing the cello on the right. Although we cannot sense the locations

of the sound sources by listening to the mono recording, we can nonetheless

anticipate what we would hear if we were personally in the scene by inference

from the visual frames.

We introduce an approach to realize this intuition. Given unlabeled

training video, we devise a mono2binaural deep convolutional neural net-

work to convert monaural audio to binaural audio by injecting the spatial

cues embedded in the visual frames. Our encoder-decoder style network takes

a mixed single-channel audio and its accompanying visual frames as input to

perform joint audio-visual analysis, and attempts to predict a two-channel

binaural audio that agrees with the spatial configurations in the video. When

listening to the predicted binaural audio—the 2.5D visual sound—listeners can

then feel the locations of the sound sources as they are displayed in the video.

Moreover, we show that apart from binaural audio generation, the

mono2binaural conversion process can also benefit audio-visual source sep-
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aration, a key challenge in audio-visual analysis, as introduced in Chapter 3,

4 and 5. State-of-the-art systems [3, 55, 75, 163, 258] aim to separate a mixed

monaural audio recording into its component sound sources, and thus far they

rely solely on the spatial cues evident in the visual stream. For example, our

two approaches for audio-visual source separation both operate on monau-

ral audio, where spatial information is missing. We show that the proposed

audio-visual binauralization can self-supervise representation learning to elicit

spatial signals relevant to separation from the audio stream as well. Criti-

cally, gaining this new learning signal requires neither semantic annotations

nor single-source data preparation, only the same unlabeled binaural training

video.

The main contributions of this final component of my thesis proposal

are threefold: Firstly, we propose to convert monaural audio to binaural audio

by leveraging video frames, and we design a mono2binaural deep network

to achieve that goal; Secondly, we collect FAIR-Play, a 5.2 hour video dataset

with binaural audio—the first dataset of its kind to facilitate research in both

the audio and vision communities; Thirdly, we propose to perform audio-visual

source separation on predicted binaural audio, and show that it provides a

useful self-supervised representation for the separation task. We validate our

approach on four challenging datasets spanning a variety of sound sources

(e.g., instruments, street scenes, travel, sports).

In Sec 7.1, I describe our mono2binaural approach for audio spatial-

ization. Then I present experimental results in Sec 7.2.
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7.1 Approach

Our approach learns to map monaural audio to binaural audio via

video. In the following, we first describe our binaural audio video dataset

(Sec. 7.1.1). Then we present our mono2binaural formulation (Sec. 7.1.2),

and our network and training procedure to solve it (Sec. 7.1.3). Finally we

introduce our approach to leverage inferred binaural sound to perform audio-

visual source separation (Sec. 7.1.4).

7.1.1 FAIR-Play Data Collection

Training our method requires binaural audio and accompanying video.

Since no large public video datasets contain binaural audio, we collect a new

dataset we call FAIR-Play with a custom rig. As shown in Fig. 7.2, we as-

sembled a rig consisting of a 3Dio Free Space XLR binaural microphone, a

GoPro HERO6 Black camera, and a Tascam DR-60D recorder as the audio

pre-amplifier. We mounted the GoPro camera on top of the 3Dio binaural

microphone to mimic a person’s embodiment for seeing and hearing, respec-

tively. The 3Dio binaural microphone records binaural audio, and the GoPro

camera records videos at 30fps with stereo audio. We simultaneously record

from both devices so the streams are roughly aligned.

Note that both the ear shaped housing (pinnae) for the microphones

and their spatial separation are significant; professional binaural mics like

3Dio simulate the physical manner in which humans receive sound. In con-

trast, stereo sound is captured by two mics with an arbitrary separation that
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Figure 7.2: Binaural rig and data collection in a music room.

varies across capture devices (phones, cameras), and so lacks the spatial nu-

ances of binaural. The limit of binaural capture, however, is that a single rig

inherently assumes a single head-related transfer function, whereas individuals

have slight variations due to inter-person anatomical differences. Personalizing

head-related transfer functions is an area of active research [110,208].
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We captured videos with our custom rig in a large music room (about

1,000 square feet). Our intent was to capture a variety of sound making

objects in a variety of spatial contexts, by assembling different combinations

of instruments and people in the room. The room contains various instruments

including cello, guitar, drum, ukelele, harp, piano, trumpet, upright bass, and

banjo. We recruited 20 volunteers to play and recorded them in solo, duet,

and multi-player performances. We post-process the raw data into 10s clips.

In the end, our FAIR-Play2 dataset consists of 1,871 short clips of musical

performances, totaling 5.2 hours. In experiments we use both the music data

as well as ambisonics datasets [155] for street scenes and YouTube videos of

sports, and travel.

7.1.2 Mono2Binaural Formulation

Binaural cues let us infer the location of sound sources. The interaural

time difference (ITD) and the interaural level difference (ILD) play an essential

role. ITD is caused by the difference in travel distances between the two

ears. When a sound source is closer to one ear than the other, there is a

time delay between the signals’ arrival at the two ears. ILD is caused by a

“shadowing” effect—a listener’s head is large relative to certain wavelengths of

sound, so it serves as a barrier, creating a shadow. The particular shape of the

head, pinnae, and torso also act as a filter depending on the locations of the

sound sources (distance, azimuth, and elevation). All these cues are missing

2https://github.com/facebookresearch/FAIR-Play
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in monaural audio, thus we cannot sense any spatial effect by listening to

single-channel audio.

We denote the signal received at the left and right ears by xL(t) and

xR(t), respectively. If we mix the two channels into a single channel xM(t) =

xL(t) + xR(t), then all spatial information collapses. We can formulate a self-

supervised task to take the mixed monaural signal xM(t) as input and split

it into two separate channels x̃L(t) and x̃R(t), using the original xL(t), xR(t)

as ground-truth during training. However, this is a highly under-constrained

problem, as xM(t) lacks the necessary information to recover both channels.

Our key idea is to guide the mono2binaural process with the accompanying

video frames, from which visual spatial information can serve as supervision.

Instead of directly predicting the two channels, we predict the difference

of the two channels:

xD(t) = xL(t)− xR(t). (7.1)

More specifically, we operate on the frequency domain and perform

short-time Fourier transform (STFT) [93] on xM(t) to obtain the complex-

valued spectrogram XM , and the objective is to predict the complex-valued

spectrogram XD for xD(t):

XM = {XM
t,f}

T,F
t=1,f=1, XD = {XD

t,f}
T,F
t=1,f=1, (7.2)

where t and f are the time frame and frequency bin indices, respectively, and

T and F are the numbers of bins. Then we obtain the predicted difference
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Figure 7.3: Our mono2binaural deep network takes a mixed monaural audio
and its accompanying visual frame as input, and predicts a two-channel binau-
ral audio output that satisfies the visual spatial configurations. An ImageNet
pre-trained ResNet-18 network is used to extract visual features, and a U-Net
is used to extract audio features and perform joint audio-visual analysis. We
predict a complex mask for the audio difference signal, then combine it with
the input mono audio to restore the left and right channels, respectively. At
test time, the input is single-channel monaural audio.

signal x̃D(t) by the inverse short-time Fourier transform (ISTFT) [93] of XD.

Finally, we recover both channels—the binaural audio output:

x̃L(t) =
xM(t) + x̃D(t)

2
, x̃R(t) =

xM(t)− x̃D(t)

2
. (7.3)

7.1.3 Mono2Binaural Network

Next we present our mono2binaural deep network to perform audio

spatialization. The network takes the mono audio xM(t) and visual frames as

input and predicts xD(t).

As shown in Fig. 7.3, we extract visual features from the center frame

of the audio segment using ResNet-18 [99], which is pre-trained on ImageNet.

The ResNet-18 network extracts per-frame features after the 4th ResNet block
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with size (H/32)× (W/32)×C, where H,W,C denote the frame and channel

dimensions. We then pass the visual feature through a 1× 1 convolution layer

to reduce the channel dimension, and flatten it into a single visual feature

vector.

On the audio side, we adopt a U-Net [184] style architecture. The U-Net

encoder-decoder network adopted here is ideal for our dense prediction task

where the input and output have the same dimension, as used in Chapter 4

and 5 to predict spectrogram masks for audio separation. We mix the left and

right channels of the binaural audio, and extract a sequence of STFT frames

to generate an audio spectrogram XM . We use the complex spectrogram: each

time-frequency bin contains the real and imaginary part of the corresponding

complex spectrogram value. Then it is passed through a series of convolution

layers to extract an audio feature of dimension (T/32) × (F/32) × C. We

replicate the visual feature vector (T/32)× (F/32) times, tile them to match

the audio feature dimension, and then concatenate the audio and visual feature

maps along the channel dimension. Through the series of operations, each

audio feature dimension is injected with the visual feature to perform joint

audio-visual analysis.

Finally, we perform up-convolutions on the concatenated audio-visual

feature map to generate a complex multiplicative spectrogram mask M. In

source separation tasks, spectrogram masks have proven better than alterna-

tives such as direct prediction of spectrograms or raw waveforms [225]. Sim-

ilarly, here we also adopt the idea of masking, but our goal is to mask the
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spectrogram of the mixed mono audio and predict the spectrogram of the

difference signal, rather than perform separation. The real and imaginary

components of the complex mask are separately estimated in the real domain.

We add a sigmoid layer after the up-convolution layers to bound the com-

plex mask values to [-1, 1], similar to [55]. The series of convolutions and

up-convolutions maps the input mono spectrogram to a complex mask that

encodes the predicted binaural audio.

Initially, we attempted to directly predict the left and right channels.

However, we found that direct prediction makes the network fall back on a

“safe” but useless solution of copying and pasting the input audio, without

reasoning with the visual features. Instead, predicting the difference signal

forces the deep network to analyze the visual information and learn the subtle

difference between the two channels, as required by the binaural audio target.

The spectrogram of the difference signal is then obtained by complex

multiplying the input spectrogram with the predicted complex mask:

X̃
D

=M ·XM . (7.4)

We train our mono2binaural network using L2 loss to minimize the distance

between the ground-truth complex spectrogram and the predicted one. Finally,

using ISTFT, we obtain the predicted difference signal x̃D(t), through which

we recover the two channels x̃L(t) and x̃R(t) as defined in Eq. 7.3. See [76] for

network details.

At test time, the network is presented with monaural audio and a video
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frame and infers the binaural output, i.e., the 2.5D visual sound. To process a

full video stream, each video is decomposed into many short audio segments.

Video frames usually do not change much within such a short segment. We use

a sliding window to perform spatialization segment by segment with a small

hop size, and average predictions on overlapping parts. Thus, our method is

able to handle moving sound sources and cameras.

Our approach expects a similar field of view (FoV) between training and

testing, and assumes the microphone is near the camera. Our experiments

demonstrate we can learn mono2binaural for both normal FoV and 360◦

video, and furthermore the same system can cope with mono inputs from

variable hardware (e.g., YouTube videos).

7.1.4 Audio-Visual Source Separation

So far we have defined our mono2binaural approach to convert monau-

ral audio to binaural audio by introducing visual spatial cues from video. Re-

call that we have two goals: to predict binaural audio for sound generation

itself, and to explore its utility for audio-visual source separation.

Audio source separation is the problem of obtaining an estimate for

each of the J sources sj from the observed linear mixture x(t) =
∑J

j=1 sj(t).

For binaural audio source separation, the problem is to obtain an estimate for

each of the J sources sj from the observed binaural mixture xL(t) and xR(t):

xL(t) =
J∑

j=1

sLj (t), xR(t) =
J∑

j=1

sRj (t), (7.5)
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where sLj (t) and sRj (t) are time-discrete signals received at the left ear and the

right ear for each source, respectively.

Interfering sound sources are often located at different spatial positions

in the physical space. Human listeners exploit the spatial information from

the coordination of both ears to resolve sound ambiguity caused by multiple

sources. This ability is greatly diminished when listening with only one ear,

especially in reverberant environments [129]. Audio source separation by ma-

chine listeners is similarly handicapped, typically lacking access to binaural

audio [55, 75, 163, 258]. However, we hypothesize that our mono2binaural

predicted binaural audio can aid separation. Intuitively, by forcing the network

to learn how to lift mono audio to binaural, its representation is encouraged

to expose the very spatial cues that are valuable for source separation. Thus,

even though the mono2binaural features see the same video as any other

audio-visual separation method, they may better decode the latent spatial cues

because of their binauralization “pre-training” task.

In particular, we expect two main effects. First, binaural audio embeds

information about the spatial distribution of sound sources, which can act as

a regularizer for separation. Second, binaural cues may be especially helpful

in cases where sound sources have similar acoustic characteristics, since the

spatial organization can reduce source ambiguities. Related regularization ef-

fects are observed in other vision tasks. For example, hallucinating motion

enhances static-image action recognition [81], or predicting semantic segmen-

tation informs depth estimation [142].
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Figure 7.4: Mix-and-Separate [55,163,258]-inspired framework for audio-visual
source separation. During training, we mix the binaural audio tracks for a pair
of videos to generate a mixed audio input. The network learns to separate the
sound for each video conditioned on their visual frames.

To implement a testbed for audio-visual source separation, we adopt

the Mix-and-Separate idea [55,163,258]. We use the same base architecture as

our mono2binaural network except that now the input to the network is a

pair of training video clips. Fig. 7.4 illustrates the separation framework. We

mix the sounds of the predicted binaural audio for the two videos to generate

a complex audio input signal, and the learning objective is to separate the

binaural audio for each video conditioned on their corresponding visual frames.

Following [258], we only use spectrogram magnitude and predict a ratio mask

for separation. Per-pixel L1 loss is used for training. See [76] for details.
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FAIR-Play REC-STREET

YT-CLEAN YT-MUSIC

Figure 7.5: Four challenging datasets: FAIR-Play, REC-STREET [155], YT-
CLEAN [155], and YT-MUSIC [155].

7.2 Experiments

We validate our approach for generation and separation.

7.2.1 Datasets

We use four challenging datasets (see Fig. 7.5) spanning a wide variety

of sound sources, including musical instruments, street scenes, travel, and

sports.

• FAIR-Play: Our new dataset consists of 1,871 10s clips of videos

recorded in a music room (Fig. 7.2). The videos are paired with binaural

audios of high quality recorded by a professional binaural microphone.
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We create 10 random splits by splitting the data into train/val/test splits

of 1,497/187/187 clips, respectively.

• REC-STREET: A dataset collected by [155] using a Theta V 360◦

camera with TA-1 spatial audio microphone. It consists of 43 videos

(3.5 hours) of outdoor street scenes.

• YT-CLEAN: This dataset contains in-the-wild 360◦ videos from YouTube

crawled by [155] using queries related to spatial audio. It consists of 496

videos of a small number of super-imposed sources, such as people talking

in a meeting room, and outdoor sports.

• YT-MUSIC: A dataset that consists of 397 YouTube videos of music

performances collected by [155]. It is their most challenging dataset due

to the large number of mixed sources (voices and instruments).

To our knowledge, FAIR-Play is the first dataset of its kind that con-

tains videos of professional recorded binaural audio. For REC-STREET, YT-

CLEAN and YT-MUSIC, we split the videos into 10s clips and divide them

into train/val/test splits based on the provided split1. These datasets only

contain ambisonics, so we use a binaural decoder to convert them to binaural

audio. Specifically, we use the head related transfer function (HRTF) from

NH2 subject in the ARI HRTF Dataset3 to perform decoding. For our FAIR-

Play dataset, half of the training data is used to train the mono2binaural

3http://www.kfs.oeaw.ac.at/hrtf
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network, and the other half is reserved for audio-visual source separation ex-

periments.

7.2.2 Mono2Binaural Generation Accuracy

We evaluate the quality of our predicted binaural audio by using com-

mon metrics as well as two user studies. We compare to the following baselines:

• Ambisonics [155]: We use the pre-trained models provided by [155]

to predict ambisonics. The models are trained on the same data as

our method. Then we use the binaural decoder to convert the pre-

dicted ambisonics to binaural audio. This baseline is not available for

the BINAURAL-MUSIC-ROOM dataset.

• Audio-Only: To determine if visual information is essential to perform

mono2binaural conversion, we remove the visual stream and imple-

ment a baseline using only audio as input. All other settings are the

same except that only audio features are passed to the up-convolution

layers for binaural audio prediction.

• Flipped-Visual: During testing, we flip the accompanying visual frames

of the mono audios to perform prediction using the wrong visual infor-

mation.

• Mono-Mono: A straightforward baseline that copies the mixed monau-

ral audio onto both channels to create a fake binaural audio.

We report two metrics: 1) STFT Distance: The euclidean distance
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FAIR-Play REC-STREET YT-CLEAN YT-MUSIC

STFT ENV STFT ENV STFT ENV STFT ENV

Ambisonics [155] - - 0.744 0.126 1.435 0.155 1.885 0.183

Audio-Only 0.966 0.141 0.590 0.114 1.065 0.131 1.553 0.167

Flipped-Visual 1.145 0.149 0.658 0.123 1.095 0.132 1.590 0.165

Mono-Mono 1.155 0.153 0.774 0.136 1.369 0.153 1.853 0.184

Mono2Binaural (Ours) 0.836 0.132 0.565 0.109 1.027 0.130 1.451 0.156

Table 7.1: Quantitative results of binaural audio prediction on four diverse
datasets. We report the STFT distance and the envelope distance; lower is
better. For FAIR-Play, we report the average results across 10 random splits.
The results have a standard error of approximately 5×10−2 for STFT distance
and 3× 10−3 for ENV distance on average.

between the ground-truth and predicted complex spectrograms of the left and

right channels:

D{STFT} = ||XL − X̃
L||2 + ||XR − X̃

R||2.

2) Envelope (ENV) Distance: Direct comparison of raw waveforms may

not capture perceptual similarity well. Following [155], we take the envelope

of the signals, and measure the euclidean distance between the envelopes of

the ground-truth left and right channels and the predicted signals. Let E[x(t)]

denote the envelope of signal x(t). The envelope distance is defined as:

D{ENV} = ||E[xL(t)]− E[x̃L(t)||2 + ||E[xR(t)]− E[x̃R(t)||2.

Results: Table 7.1 shows the binaural generation results. Our method out-

performs all baselines consistently on all four datasets. Our mono2binaural

approach performs better than the Audio-Only baseline, indicating the visual

stream is essential to guide conversion. Note that the Audio-Only baseline

uses the same network design as our method, so it has reasonably good perfor-

mance. Still, we find our method outperforms it most when object(s) are not
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simply located in the center. Flipped-Visual performs much worse, demon-

strating that our network properly learns to localize sound sources to predict

binaural audio correctly.

The Ambisonics [155] approach does not do as well. We hypothesize

several reasons. The method predicts four channel ambisonics directly, which

must be converted to binaural audio. While ambisonics have the advantage

of being a more general audio representation that is ideal for 360◦ video, pre-

dicting ambisonics first and then decoding to binaural audio for deployment

can introduce artifacts that make the binaural audio less realistic. Better

head-related transfer functions could help to render more realistic binaural

audio from ambisonics, but this remains active research [133, 160].4 Further-

more, manually inspecting the results, we find that the decoded binaural audio

by [155] conveys spatial sensation, but it is less accurate and stable than our

method. Our approach directly formulates the audio spatialization problem in

terms of the two-channel binaural audio that listeners ultimately hear, which

yields better accuracy.

Our video results5 show qualitative results including failure cases. Our

system can fail when there are multiple objects of similar appearance, e.g.

multiple human speakers. Our model incorrectly spatializes the audio, because

the people are too visually similar. However, when there is only one human

4We experimented with multiple ambisonics-binaural decoding solutions and report the
best results for [155] in Table 7.1.

5http://vision.cs.utexas.edu/projects/2.5D_visual_sound/
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(a) User study 1 (b) User study 2

Figure 7.6: User studies to test how listeners perceive the predicted binaural
audio. For the first study, the participants are asked to compare two predicted
binaural audios generated by our method and a baseline; For the second study,
the participants are asked to name the direction they hear a particular sound
coming from. Both studies suggest that the predicted binaural audio form our
method presents listeners a much more accurate spatial audio experience.

speaker amidst other sounds, it can successfully perform audio spatialization.

Future work incorporating motion may benefit instance-level spatialization.

User Studies: Having quantified the advantage of our method in Table 7.1,

we now report real user studies. To test how well the predicted binaural audio

makes a listener feel the 3D sensation, we conduct two user studies.

For the first study, the participants listen to a 10s ground-truth binaural

audio and see the visual frame. Then they listen to two predicted binaural

audios generated by our method and a baseline (Ambisonics, Audio-Only, or

Mono-Mono). After listening to each pair, participants are asked which of
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the two creates a better 3D sensation that matches the ground-truth binaural

audio. We recruited 18 participants with normal hearing. Each listened to 45

pairs spanning all the datasets. Fig. 7.6a shows the results. We report the

percentage of times each method is chosen as the preferred one. We can see

that the binaural audio generated by our method creates a more realistic 3D

sensation.

For the second user study, we ask participants to name the direction

they hear a particular sound coming from. Using the FAIR-Play data, we

randomly select 10 instrument video clips where some player is located in the

left/center/right of the visual frames. We ask every participant to only listen

to the ground-truth or predicted binaural audio from our method or a baseline,

and then choose the direction the sound of a specified instrument is coming

from. Note that for this study, we input real mono audio recorded by the

GoPro mic for binaural audio prediction. Fig. 7.6b shows the results from the

18 participants. The true recorded binaural audio is of high quality, and the

listeners can often easily perceive the correct direction. However, our predicted

binaural audio also clearly conveys directionality. Compared to the baselines,

ours presents listeners a much more accurate spatial audio experience.

7.2.3 Localizing the Sound Sources

Does the network attend to the locations of the sound sources when

performing binauralization? As a byproduct of our mono2binaural train-

ing, we can use the network to perform sound source localization. We use a

148



F
ig

u
re

7.
7:

V
is

u
al

iz
in

g
th

e
ke

y
re

gi
on

s
th

e
v
is

u
al

n
et

w
or

k
fo

cu
se

s
on

w
h
en

p
er

fo
rm

in
g
m
o
n
o
2
b
in
a
u
r
a
l

co
n
ve

rs
io

n
.

E
ac

h
p
ai

r
of

im
ag

es
sh

ow
s

th
e

fr
am

e
ac

co
m

p
an

y
in

g
th

e
m

on
au

ra
l
au

d
io

(l
ef

t)
an

d
th

e
h
ea

tm
ap

of
th

e
ke

y
re

gi
on

s
ov

er
la

id
(r

ig
h
t)

.

149



mask of size 32 × 32 to replace image regions with image mean values, and

forward the masked frame through the network to predict binaural audio.

Then we compute the loss, and repeat by placing the mask at different loca-

tions of the frame. Finally, we highlight the regions which, when replaced,

lead to the largest losses. They are considered the most important regions for

mono2binaural conversion, and are expected to align with sound sources.

Fig. 7.7 shows examples. The highlighted key regions correlate quite

well with sound sources. They are usually the instruments playing in the music

room, the moving cars in street scenes, the place where an activity is going

on, etc. The final row shows some failure cases. The model can be confused

when there are multiple similar instruments in view, or silent or noisy scenes.

Sound sources in YT-Clean and YT-Music are especially difficult to spatialize

and localize due to diverse and/or large number of sound sources.

7.2.4 Audio-Visual Source Separation

In Chapters 3, 4, and 5, we introduced our three approaches for audio-

visual source separation, a key problem in audio-visual analysis. In this chap-

ter, having demonstrated our predicted binaural audio creates a better 3D

sensation, we now examine its impact on audio-visual source separation using

the FAIR-Play dataset. The dataset contains object-level sounds of diverse

sound making objects (instruments), which is well-suited for the Mix-and-

Separate audio-visual source separation approach we adopt. We train on the

held-out data of FAIR-Play, and test on 10 typical single-instrument video
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SDR SIR SAR

Mono 2.57 4.25 10.12
Mono-Mono 2.43 4.01 10.15

Predicted Binaural (Ours) 3.01 5.03 10.24
GT Binaural (upper bound) 3.25 5.32 10.60

Table 7.2: Audio-visual source separation results. SDR, SIR, SAR are reported
in dB; higher is better.

clips from the val/test set, with each representing one unique instrument in

our dataset. We pairwise mix each video clip and perform separation, for a

total of 45 test videos.

In addition to the ground truth binaural (upper bound) and the Mono-

Mono baseline defined above, we compare to a Mono baseline that takes

monaural audio as input and separates monaural audios for each source. Mono

represents the current norm of performing audio-visual source separation us-

ing only single-channel audio [75, 163, 258]. We stress that all other aspects

of the networks are the same, so that any differences in performance can be

attributed to our binauralization self-supervision. To evaluate source separa-

tion quality, we use the widely used mir eval library [175], and the standard

metrics: Signal-to-Distortion Ratio (SDR), Signal-to-Interference Ratio (SIR),

and Signal-to-Artifact Ratio (SAR). Table 7.2 shows the results. We obtain

large gains by inferring binaural audio. The inferred binaural audio offers

a more informative audio representation compared to the original monaural

audio, leading to cleaner separation. See our qualitative video5 for examples.
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7.3 Conclusions

In this chapter, I presented an approach to convert single channel au-

dio into binaural audio by leveraging object/scene configurations in the visual

frames. The predicted 2.5D visual sound offers a more immersive audio experi-

ence. Our mono2binaural framework achieves state-of-the-art performance

on audio spatialization. Moreover, using the predicted binaural audio as a

better audio representation, we boost a modern model for audio-visual source

separation.

However, our frame-based model can get confused when there are multi-

ple instruments of similar appearance in view. Motion analysis may be needed

in order to perform instance-level spatialization. Scene sounds are not explic-

itly modeled for our current model, so it can find it difficult to predict spatial

audio in complex environments of diverse sounds. Our model performs the

best in the music room setting, but does not generalize as well to other novel

domains. It would be important and interesting to train a more generalizable

model that can infer realistic spatial audio for “in the wild” videos of normal

field of view. Nevertheless, as the first approach to perform visually-guided

mono2binaural audio spatialization, the obtained results constitute a no-

ticeable step towards offering listeners more immersive 3D sound sensation.

Generating binaural audio for off-the-shelf video can potentially close the gap

between transporting audio and visual experiences, enabling new applications

in VR/AR.

My work presented in the previous several chapters of this dissertation
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all leverage videos for audio-visual learning. However, humans learn not only

by watching these passively captured videos of audio-visual streams, but also

by actively interacting with the environment to learn about the world. In

the final component of my dissertation, I will present VisualEchoes, an

approach to learn by using audio to actively interact with the physical world

through echolocation.
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Chapter 8

Spatial Image Representation Learning

through Echolocation

1In the previous chapters, I introduced several approaches for audio-

visual learning from videos, which are passively captured. In this chapter, I

present VisualEchoes, an approach to actively interact with the physical

world using audio for spatial image representation learning. This work was

published in ECCV 2020 [74].

The perceptual and cognitive abilities of embodied agents are inextri-

cably tied to their physical being. We perceive and act in the world by making

use of all our senses—especially looking and listening. We see our surroundings

to avoid obstacles, listen to the running water tap to navigate to the kitchen,

and infer how far away the bus is once we hear it approaching.

As discussed in the last chapter, by using two ears, we perceive spatial

sound. Not only can we identify the sound-emitting object (e.g., the revving

1The work in this chapter was supervised by Prof. Kristen Grauman and was originally
published in: “VisualEchoes: Spatial Image Representation Learning through Echoloca-
tion”. Ruohan Gao, Changan Chen, Ziad Al-Halah, Carl Schissler, and Kristen Grauman.
In Proceedings of the European Conference on Computer Vision, Virtual, August 2020.
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engine corresponds to a bus), but also we can determine that object’s location.

Critically, even beyond objects, audio is also rich with information about the

environment itself. The sounds we receive are a function of the geometric

structure of the space around us and the materials of its major surfaces [12].

In fact, some animals capitalize on these cues by using echolocation—actively

emitting sounds to perceive the 3D spatial layout of their surroundings [185].

We propose to learn image representations from echoes. Motivated by

how animals and blind people obtain spatial information from echo responses,

first we explore to what extent the echoes of chirps generated in a scanned

3D environment are predictive of the depth in the scene. Then, we intro-

duce VisualEchoes, a novel image representation learning method based on

echolocation. Given a first-person RGB view and an echo audio waveform, our

model is trained to predict the correct camera orientation at which the agent

would receive those echoes. In this way, the representation is forced to capture

the alignment between the sound reflections and the (visually observed) sur-

faces in the environment. At test time, we observe only pixels—no audio. Our

learned VisualEchoes encoder better reveals the 3D spatial cues embedded

in the pixels, as we demonstrate in three downstream tasks.

Our approach offers a new way to learn image representations without

manual supervision by interacting with the environment. In pursuit of this

high-level goal there is exciting—though limited—prior work that learns visual

features by touching objects [7, 164,169,172] or moving in a space [6, 73, 118].

Unlike mainstream “self-supervised” feature learning work that crafts pretext
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tasks for large static repositories of human-taken images or video (e.g., col-

orization [255], jigsaw puzzles [161], audio-visual correspondence [13,130]), in

interaction-based feature learning an embodied agent2 performs physical ac-

tions in the world that dynamically influence its own first-person observations

and possibly the environment itself. Both paths have certain advantages: while

conventional self-supervised learning can capitalize on massive static datasets

of human-taken photos, interaction-based learning allows an agent to “learn

by acting” with rich multi-modal sensing. This has the advantage of learning

features adaptable to new environments. Unlike any prior work, we explore

feature learning from echoes.

Our contributions are threefold: 1) We explore the spatial cues con-

tained in echoes, analyzing how they inform depth prediction; 2) We propose

VisualEchoes, a novel interaction-based feature learning framework that

uses echoes to learn an image representation and does not require audio at

test time; 3) We successfully validate the learned spatial representation for

the fundamental downstream vision tasks of monocular depth prediction, sur-

face normal estimation, and visual navigation, with results comparable to or

even outperforming heavily supervised pre-training baselines.

In Sec 8.1, I describe our co-separation approach for learning audio-

visual source separation. Then I present key experiments and results in Sec 8.2.

2person, robot, or simulated robot
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8.1 Approach

Our goals are to show that echoes convey spatial information, to learn

visual representations by echolocation, and to leverage the learned represen-

tations for downstream tasks. In the following, we first describe how we simu-

late echoes in 3D environments (Sec. 8.1.1). Then we perform a case study to

demonstrate how echoes can benefit monocular depth prediction (Sec. 8.1.2).

Next, we present VisualEchoes, our interaction-based feature learning for-

mulation to learn image representations (Sec. 8.1.3). Finally, we exploit the

learned visual representation for monocular depth, surface normal prediction,

and visual navigation (Sec. 8.1.4).

8.1.1 Echolocation Simulation

Our echolocation simulation is based on recent work on audio-visual

navigation that builds a realistic acoustic simulation called SoundSpaces [28]

on top of the Habitat [189] platform and Replica environments [202]. Habi-

tat [189] is an open-source 3D simulator that supports efficient RGB, depth,

and semantic rendering for multiple datasets [27,202,243]. Replica is a dataset

of 18 apartment, hotel, office, and room scenes with 3D meshes and high defini-

tion range (HDR) textures and renderable reflector information. SoundSpaces [28]

simulates acoustics by pre-computing room impulse responses (RIR) between

all pairs of possible source and receiver locations, using a form of audio ray-

tracing [217]. An RIR is a transfer function between the sound source and the

sound microphone, and it is influenced by the room geometry, materials, and
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the sound source location [134]. The sound received at the listener location is

computed by convolving the appropriate RIR with the waveform of the source

sound.

We use the binaural RIRs for all Replica environments to generate

echoes for our approach. As the source audio “chirp” we use a sweep signal

from 20Hz-20kHz (the human-audible range) within a duration of 3ms. While

technically any emitted sound could provide some echo signal from which to

learn, our design (1) intentionally provides the response for a wide range of

frequencies and (2) does so in a short period of time to avoid overlap between

echoes and direct sounds. We place the source at the same location as the

receiver and convolve the RIR for this source-receiver pair with the sweep

signal. In this way, we compute the echo responses that would be received at

the agent’s microphone locations. We place the agents at all navigable points

on the grid (every 0.5m [28]) and orient the agent in four cardinal directions

(0◦, 90◦, 180◦, 270◦) so that the rendered egocentric views (RGB and depth)

and echoes capture room geometry from different locations and orientations.

Fig. 8.1 illustrates how we perform echolocation for one scene environ-

ment. The agent goes to the densely sampled navigable locations marked with

yellow dots and faces four orientations at each location. It actively emits om-

nidirectional chirp signals and records the echo responses received when facing

each direction. Note that the spectrograms of the sounds received at the left

(L) and right (R) ears reveal that the agent first receives the direct sound

(strong bright curves), and then receives different echoes for the left and right
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3ms sweep signal

Agent location

RGB Depth Echoes

L
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L
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L
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R

Figure 8.1: Echolocation simulation in real-world scanned environments. Dur-
ing training, the agent goes to the densely sampled locations marked with yel-
low dots. The left bottom figure illustrates the top-down view of one Replica
scene where the agent’s location is marked. The agent actively emits 3 ms
omnidirectional sweep signals to get echo responses from the room. The right
column shows the corresponding RGB and depth of the agent’s view as well
as the echoes received in the left and right ears when the agent faces each of
the four directions.

microphones due to ITD, ILD, and pinnae reflections. The subtle difference

in the two spectrograms conveys cues about the spatial configuration of the

environment, as can be observed in the last column of Fig. 8.1.

8.1.2 Case Study: Spatial Cues in Echoes

With the synchronized egocentric views and echo responses in hand,

we now conduct a case study to investigate the spatial cues contained in echo

responses in these realistic indoor 3D environments. We have two questions:
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(1) can we directly predict depth maps purely from echoes? and (2) can

we use echoes to augment monocular depth estimation from RGB? Answer-

ing these questions will inform our ultimate goal of devising a interaction-

supervised visual feature learning approach leveraging echoes only at training

time (Sec. 8.1.3). Furthermore, it can shed light on the extent to which low-

cost audio sensors can replace depth sensors, which would be especially useful

for navigation robots under severe bandwidth or sensing constraints, e.g., nano

drones [152,166].

Note that these two goals are orthogonal to that of prior work per-

forming depth prediction from a single view [52, 68, 106, 143, 245]. Whereas

they focus on developing sophisticated loss functions and architectures, here

we explore how an agent actively interacting with the scene acoustically may

improve its depth predictions. Our findings can thus complement existing

monocular depth models.

We devise an RGB+Echo2Depth network (and its simplified variants

using only RGB or echo) to test the settings of interest. The RGB+Echo2Depth

network predicts a depth map based on the agent’s egocentric RGB input and

the echo response it receives when it emits a chirp standing at that position

and orientation in the 3D environment. The core model is a multi-modal U-

Net [184]; see Fig. 8.2. To directly measure the spatial cues contained in echoes

alone, we also test a variant called Echo2Depth. Instead of performing up-

sampling based on the audio-visual representation, this model drops the RGB

input, reshapes the audio feature, and directly upsamples from the audio rep-
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Apartment0 - 54 - 180Figure 8.2: Our RGB+Echo2Depth network takes the echo responses and
the corresponding egocentric RGB view as input, and performs joint audio-
visual analysis to predict the depth map for the input image. The injected
echo response provides additional cues of the spatial layout of the scene. Note:
in later sections we define networks that do not have access to the audio stream
at test time.

RMS ↓ REL ↓ log 10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Average 1.070 0.791 0.230 0.235 0.509 0.750

Echo2Depth 0.713 0.347 0.134 0.580 0.772 0.868

RGB2Depth 0.374 0.202 0.076 0.749 0.883 0.945

RGB+Echo2Depth 0.346 0.172 0.068 0.798 0.905 0.950

Table 8.1: Case study depth prediction results. ↓ lower better, ↑ higher better.

resentation. Similarly, to measure the cues contained in the RGB alone, a vari-

ant called RGB2Depth drops the echoes and predicts the depth map purely

based on the visual features. The RGB2Depth model represents existing

monocular depth prediction approaches that predict depth from a single RGB

image, in the context of the same architecture design as RGB+Echo2Depth

to allow apples-to-apples calibration of our findings. We use RGB images of

spatial dimension 128 × 128. See [78] for network details and loss functions

used to train the three models.

Table 8.1 shows the quantitative results of predicting depth from only
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RGB Ground truth RGB Only Echo Only RGB+Echo

1. Frl_apartment_5_90degree_201_201
2. Apartment_2_180degree_86_86 
3.  office_4_270degree_87_87 
4. office_4_90degree_14_14 

Figure 8.3: Qualitative results of our case study on monocular depth esti-
mation in unseen environments using echoes. Together with the quantitative
results (Tab. 8.1), these examples show that echoes contain useful spatial cues
that inform a visual spatial task. For example, in row 1, the RGB+Echo model
better infers the depth of the column on the back wall, whereas the RGB-Only
model mistakenly infers the strong contours to indicate a much closer surface.
The last row shows a typical failure case (see text). See [74] for more examples.

echoes, only RGB, or their combination. We evaluate on a heldout set of three

Replica environments (comprising 1,464 total views) with standard metrics:

root mean squared error (RMS), mean relative error (REL), mean log 10 error

(log 10), and thresholded accuracy [52,106]. We can see that depth prediction

is possible purely from echoes. Augmenting traditional single-view depth esti-

mation with echoes (bottom row) achieves the best performance by leveraging

the additional acoustic spatial cues. Echoes alone are naturally weaker than
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RGB alone, yet still better than the simple Average baseline that predicts

the average depth values in all training data.

Fig. 8.3 shows qualitative examples. It is clear that echo responses

indeed contain cues of the spatial layout; the depth map captures the rough

room layout, especially its large surfaces. When combined with RGB, the

predictions are more accurate. The last row shows a typical failure case, where

the echoes alone cannot capture the depth as well due to far away surfaces with

weaker echo signals.

8.1.3 VisualEchoes Spatial Representation Learning Framework

Having established the scope for inferring depth from echoes, we now

present our VisualEchoes model to leverage echoes for visual representation

learning. We stress that our approach assumes audio/echoes are available only

during training; at test time, an RGB image alone is the input.

The key insight of our approach is that the echoes and visual input

should be consistent. This is because both are functions of the same latent

variable—the 3D shape of the environment surrounding the agent’s co-located

camera and microphones. We implement this idea by training a network to

predict their correct association.

In particular, as described in Sec. 8.1.1, at any position in the scene,

we suppose the agent can face four orientations, i.e., at an azimuth angle

of 0◦, 90◦, 180◦, and 270◦. When the agent emits the sweep signal (chirp)

at a certain position, it will hear different echo responses when it faces each

163



VisualEchoes-Net

Echo-Net

STFT

Spectrogram
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udio-Visual

Fusion
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Right ear

Agent’s View

FC

Echo response
Orientation

Figure 8.4: Our VisualEchoes network takes the agent’s current RGB view
as visual input, and the echo responses from one of the four orientations as
audio input. The goal is to predict the orientation at which the agent would
receive the input echoes based on analyzing the spatial layout in the image.
After training with RGB and echoes, the VisualEchoes-Net is a pre-trained
encoder ready to extract spatially enriched features from novel RGB images,
as we validate with multiple downstream tasks (cf. Sec. 8.1.4).

different orientation. If the agent correctly interprets the spatial layout of the

current view from visual information, it should be able to tell whether that

visual input is congruous with the echo response it hears. Furthermore, and

more subtly, to the extent the agent implicitly learns about probable views

surrounding its current egocentric field of view (e.g., what the view just to its

right may look like given the context of what it sees in front of it), it should

be able to tell which direction the received echo would be congruous with, if

not the current view.

We introduce a representation learning network to capture this insight.

See Fig. 8.4. The visual stream takes the agent’s current RGB view as input,

and the audio stream takes the echo response received from one of the four

orientations—not necessarily the one that coincides with the visual stream
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orientation. The fusion layer fuses the audio and visual information to generate

an audio-visual feature of dimension D. A final fully-connected layer is used

to make the final prediction among four classes. See [80] and Sec. 8.2 for

architecture details.

The four classes are defined as follows:

↑ : The echo is received from the same orientation as the agent’s current

view.

→ : The echo is received from the orientation if the agent turns right by

90◦.

↓ : The echo is received from the orientation opposite the agent’s current

view.

← : The echo is received from the orientation if the agent turns left by 90◦.

The network is trained with cross-entropy loss. Note that although the

emitted source signal is always the same (3 ms omnidirectional sweep signal,

cf. Sec. 8.1.1), the agent hears different echoes when facing the four directions

because of the shape of the ears and the head shadowing effect modeled in

the binaural head-related transfer function (HRTF). Since the classes above

are defined relative to the agent’s current view, it can only tell the orientation

for which it is receiving the echoes if it can correctly interpret the 3D spatial

layout within the RGB input. In this way, the agent’s aural interaction with

the scene enhances spatial feature learning for the visual stream.
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The proposed idea generalizes trivially to use more than four discrete

orientations—and even arbitrary orientations if we were to use regression

rather than classification. The choice of four is simply based on the sound

simulations available in existing data [28], though we anticipate it is a good

granularity to capture the major directions around the agent. Our training

paradigm requires the representation to discern mismatches between the im-

age and echo using echoes generated from the same physical position on the

ground plane but different orientations. This is in line with our interactive

embodied agent motivation, where an agent can look ahead, then turn and

hear echoes from another orientation at the same place in the environment,

and learn their (dis)association. In fact, ecological psychologists report that

humans can perform more accurate echolocation when moving, supporting the

rationale of our design [185, 203]. Furthermore, our design ensures the mis-

matches are “hard” examples useful for learning spatial features because the

audio-visual data at offset views will naturally be related to one another (as

opposed to views or echoes from an unrelated environment).

8.1.4 Downstream Tasks for the Learned Spatial Representation

Having introduced our VisualEchoes feature learning framework,

next we describe how we repurpose the learned visual representation for three

fundamental downstream tasks that require spatial reasoning: monocular depth

prediction, surface normal estimation, and visual navigation. See Fig. 8.5 for

an illustration of the three tasks. For each task, we adopt strong models from
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(a) Monaural depth prediction (b) Surface normal estimation (c) Visual navigation

Figure 8.5: Illustration of the three downstream tasks that require spatial
reasoning.

the literature and swap in our pre-trained encoder VisualEchoes-Net for

the RGB input.

Monocular Depth Prediction: We explore how our echo-based pre-training

can benefit performance for traditional monocular depth prediction. Note that

unlike the case study in Sec. 8.1.2, in this case there are no echo inputs at test

time, only RGB. To evaluate the quality of our learned representation, we

adopt a strong recent approach for monocular depth prediction [106] consist-

ing of several novel loss functions and a multi-scale network architecture that

is based on a backbone network. We pre-train ResNet-50 [99] using VisualE-

choes and use it as the backbone for comparison with [106].

Surface Normal Estimation: We also evaluate the learned spatial repre-

sentation to predict surface normals from a single image, another fundamental

mid-level vision task that requires spatial understanding of the geometry of

the surfaces [66]. We adopt the the state-of-the-art pyramid scene parsing net-

work PSPNet architecture [259] for surface normal prediction, again swapping
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in our pre-trained VisualEchoes network for the RGB feature backbone.

Visual Navigation: Finally, we validate on an embodied visual navigation

task. In this task, the agent receives a sequence of RGB images as input and a

point goal defined by a displacement vector relative to the starting position of

the agent [11]. The agent is spawned at random locations and must navigate

to the target location quickly and accurately. This entails reasoning about

3D spatial configurations to avoid obstacles and find the shortest path. We

adopt a state-of-the-art reinforcement learning-based PointGoal visual navi-

gation model [189]. It consists of a three-layer convolutional network and a

fully-connected layer to extract visual feature from the RGB images. We pre-

train its visual network using VisualEchoes, then train the full network end

to end.

While other architectures are certainly possible for each task, our choices

are based on both on the methods’ effectiveness in practice, their wide use in

the literature, and code availability. Our contribution is feature learning from

echoes as a pre-training mechanism for spatial tasks, which is orthogonal to

advances on architectures for each individual task. In fact, a key message of

our results is that the VisualEchoes-Net encoder boosts multiple spatial

tasks, under multiple different architectures, and on multiple datasets.
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Replica NYU-V2 DIODE

Figure 8.6: We evaluate on three detasets: Replica [202], NYU-V2 [193], and
DIODE [215].

8.2 Experiments

We present experiments to validate VisualEchoes for three tasks

and three datasets as shown in Fig. 8.6 (Replica [202], NYU-V2 [193], and

DIODE [215]). The goal is to examine the impact of our features compared

to either learning features for that task from scratch or learning features with

manual semantic supervision. See [80] for details of the three datasets.

Implementation Details: All networks are implemented in PyTorch. For

the echoes, we use the first 60 ms, which allows most of the room echo responses

following the 3 ms chirp to be received. We use an audio sampling rate of 44.1

kHz. STFT is computed using a Hann window of length 64, hop length of 16,

and FFT size of 512. The audio-visual fusion layer (see Fig. 8.4) concatenates

the visual and audio feature, and then uses a fully-connected layer to reduce the

feature dimension to D = 128. See [74] for details of the network architectures

and optimization hyperparameters.
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Evaluation Metrics: We report standard metrics for the downstream tasks.

1) Monocular Depth Prediction: RMS, REL, and others as defined above,

following [52, 106]. 2) Surface Normal Estimation: mean and median of the

angle distance and the percentage of good pixels (i.e., the fraction of pixels

with cosine distance to ground-truth less than t) with t = 11.25◦, 22.5◦, 30◦,

following [66]. 3) Visual Navigation: success rate normalized by inverse path

length (SPL), the distance to the goal at the end of the episode, and the

distance to the goal normalized by the trajectory length, following [11].

8.2.1 Transferring VisualEchoes Features for RGB2Depth

Having confirmed echoes reveal spatial cues in Sec. 8.1.2, we now

examine the effectiveness of VisualEchoes, our learned representation. Our

model achieves 66% test accuracy on the orientation prediction pretext task,

while chance performance is only 25%; this shows learning the visual-echo

consistency task itself is possible.

First, we use the same RGB2Depth network from our case study in

Sec. 8.1.2 as a testbed to demonstrate the learned spatial features can be

successfully transferred to other domains. Instead of randomly initializing

the RGB2Depth UNet encoder, we initialize with an encoder 1) pre-trained

for our visual-echo consistency task, 2) pre-trained for image classification

using ImageNet [41], or 3) pre-trained for scene classification using the MIT

Indoor Scene dataset [174]. Throughout, aside from the standard ImageNet

pre-training baseline, we also include MIT Indoor Scenes pre-training, in case
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RMS ↓ REL ↓ log 10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
S
u
p ImageNet Pre-trained 0.356 0.203 0.076 0.748 0.891 0.948

MIT Indoor Scene Pre-trained 0.334 0.196 0.072 0.770 0.897 0.950

U
n
su

p Scratch 0.360 0.214 0.078 0.747 0.879 0.940

VisualEchoes (Ours) 0.332 0.195 0.070 0.773 0.899 0.951

(a) Replica
RMS ↓ REL ↓ log 10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

S
u
p ImageNet Pre-trained 0.812 0.249 0.102 0.589 0.855 0.955

MIT Indoor Scene Pre-trained 0.776 0.239 0.098 0.610 0.869 0.959

U
n
su

p Scratch 0.818 0.252 0.103 0.586 0.853 0.950

VisualEchoes (Ours) 0.797 0.246 0.100 0.600 0.863 0.956

(b) NYU-V2
RMS ↓ REL ↓ log 10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

S
u
p ImageNet Pre-trained 2.250 0.453 0.199 0.336 0.591 0.766

MIT Indoor Scene Pre-trained 2.218 0.424 0.198 0.363 0.632 0.776

U
n
su

p Scratch 2.352 0.481 0.214 0.321 0.581 0.742

VisualEchoes (Ours) 2.223 0.430 0.198 0.340 0.610 0.769

(c) DIODE

Table 8.2: Depth prediction results on the Replica, NYU-V2, and DIODE
datasets. We use the RGB2Depth network from Sec. 8.1.2 for all models.
Our VisualEchoes pre-training transfers well, consistently predicting depth
better than the model trained from scratch. Furthermore, it is even compet-
itive with the supervised models, whether they are pre-trained for ImageNet
or MIT Indoor Scenes (1M/16K manually labeled images). ↓ lower better, ↑
higher better. (Un)sup = (un)supervised. We boldface the best unsupervised
method.

it strengthens the baseline due to its domain alignment with the indoor scenes

in Replica, DIODE, and NYU-2.3

Table 8.2 shows the results on all three datasets: Replica, NYU-V2,

and DIODE. The model initialized with our pre-trained VisualEchoes net-

work achieves much better performance compared to the model trained from

3Like the test datasets, MIT Indoor Scenes contains indoor scenes. Performance is similar
when pre-training on Places [261], which is larger but contains diverse indoor and outdoor
scenes.
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RMS ↓ REL ↓ log 10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Scratch 0.360 0.214 0.078 0.747 0.879 0.940

SimpleVisualEchoes 0.340 0.198 0.073 0.763 0.892 0.948

BinaryMatching 0.345 0.199 0.074 0.760 0.889 0.944

VisualEchoes (Ours) 0.332 0.195 0.070 0.773 0.899 0.951

Table 8.3: Ablation study on Replica. See [74] for results on NYU-V2 and
Diode.

scratch. Moreover, it even outperforms the supervised model pre-trained on

scene classification in some cases. The ImageNet pre-trained model performs

much worse; we suspect that the UNet encoder does not have sufficient ca-

pacity to handle ImageNet classification, and also the ImageNet domain is

much different than indoor scene environments. This result accentuates that

task similarity promotes positive transfer [254]: our unsupervised spatial pre-

training task is more powerful for depth inference than a supervised seman-

tic category pre-training task. See [74] for low-shot experiments varying the

amount of training data.

We also perform an ablation study to demonstrate that the design of

our spatial representation learning framework is essential and effective. We

compare with the following two variants: SimpleVisualEchoes, which sim-

plifies our orientation prediction task to two classes; and BinaryMatching,

which mimics prior work [13] that leverages the correspondence between im-

ages and audio as supervision by training a network to decide if the echo and

RGB are from the same environment. As shown in Table 8.3, our method

performs much better than both baselines. See [74] for details.
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RMS ↓ REL ↓ log 10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
S
u
p ImageNet Pre-trained [106] 0.555 0.126 0.054 0.843 0.968 0.991

MIT Indoor Scene Pre-trained 0.711 0.180 0.075 0.730 0.925 0.979

U
n
su

p Scratch 0.804 0.209 0.086 0.676 0.897 0.967

VisualEchoes (Ours) 0.683 0.165 0.069 0.762 0.934 0.981

(a) Depth prediction results on NYU-V2.
Mean Dist. ↓ Median Dist. ↓ t < 11.25◦ ↑ t < 22.5◦ ↑ t < 30◦ ↑

S
u
p ImageNet Pre-trained 26.4 17.1 36.1 59.2 68.5

MIT Indoor Scene Pre-trained 25.2 17.5 36.5 57.8 67.2

U
n
su

p Scratch 26.3 16.1 37.9 60.6 69.0

VisualEchoes (Ours) 22.9 14.1 42.7 64.1 72.4

(b) Surface normal estimation results on NYU-V2. The results for the ImageNet
Pre-trained baseline and the Scratch baseline are directly quoted from [91].

SPL ↑ Distance to Goal ↓ Normalized Distance to Goal ↓

S
u
p ImageNet Pre-trained 0.833 0.663 0.081

MIT Indoor Scene Pre-trained 0.798 1.05 0.124

U
n
su

p Scratch 0.830 0.728 0.096

VisualEchoes (Ours) 0.856 0.476 0.061

(c) Visual navigation performance in unseen Replica environments.

Table 8.4: Results for three downstream tasks. ↓ lower better, ↑ higher better.

8.2.2 Evaluating on Downstream Tasks

Next we evaluate the impact of our learned VisualEchoes represen-

tation on all three downstream tasks introduced in Sec. 8.1.4.

Monocular Depth Prediction: Table 8.4a shows the results.4 All methods

use the same settings as [106], where they evaluate and report results on NYU-

V2. We use the authors’ publicly available code5 and use ResNet-50 as the

encoder. See [74] for details. With this apples-to-apples comparison, the

4We evaluate on NYU-V2, the most widely used dataset for the task of single view depth
prediction and surface normal estimation. The authors’s code [91, 106] is tailored to this
dataset.

5https://github.com/JunjH/Revisiting_Single_Depth_Estimation
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difference in performance can be attributed to whether/how the encoder is

pre-trained. Although our VisualEchoes features are learned from Replica,

they transfer reasonably well to NYU-V2, outperforming models trained from

scratch by a large margin. This result is important because it shows that

despite training with simulated audio, our model generalizes to real-world test

images. Our features also compare favorably to supervised models trained

with heavy supervision.

Surface Normal Estimation: Table 8.4b shows the results. We follow

the same setting as [91] and we use the authors’ publicly available code.6

Our model performs much better even compared to the ImageNet-supervised

pre-trained model, demonstrating that our interaction-based feature learning

framework via echoes makes the learned features more useful for 3D geometric

tasks.

Visual Navigation: Table 8.4c shows the results. By pre-training the visual

network, VisualEchoes equips the embodied agents with a better sense of

room geometry and allows them to learn faster. Notably, the agent also ends

much closer to the goal. We suspect it can better gauge the distance because

of our VisualEchoes pre-training. Models pre-trained for classification on

MIT Indoor Scenes perform more poorly than Scratch; again, this suggests

features useful for recognition may not be optimal for a spatial task like point

goal navigation.

6https://github.com/facebookresearch/fair_self_supervision_benchmark
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Figure 8.7: Qualitative results of monocular depth prediction on the NYU-V2
dataset.

This series of results on three tasks consistently shows the promise of

our VisualEchoes features. We see that learning from echoes translates into

a strengthened visual encoding. Importantly, while it is always an option to

train multiple representations entirely from scratch to support each given task,

our results are encouraging since they show the same fundamental interaction-

based pre-training is versatile across multiple tasks.

8.2.3 Qualitative Results

Next, we show some qualitative results for the downstream tasks de-

scribed in the last section. Fig. 8.7 and Fig. 8.8 show example results on

monocular depth prediction and surface normal estimation, respectively. Us-

ing our pre-trained VisualVoice network as initialization leads to much more

accurate depth prediction and surface normal estimation results compared to
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Figure 8.8: Qualitative results of surface normal estimation on the NYU-V2
dataset.

ImageNet Pre-trained MIT Indoor Scene Pre-trained Scratch Ours

Figure 8.9: Qualitative examples of visual navigation trajectories on top-down
maps. Blue square and arrow denote agent’s starting and ending positions,
respectively. The green path indicates the shortest geodesic path to the goal,
and the agent’s path is in dark blue. Agent path color fades from dark blue
to light blue as time goes by. Note, the agent sees a sequence of egocentric
views, not the map.

no pre-training, demonstrating the usefulness of the learned spatial features.

Fig. 8.9 shows example navigation trajectories on top-down maps. Our visual-

echo consistency pre-training task allows the agent to better interpret the

room’s spatial layout to find the goal more quickly than the baselines.
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8.3 Conclusions

In this chapter, I presented an approach to learn spatial image represen-

tations via echolocation. We performed an in-depth study on the spatial cues

contained in echoes and how they can inform single-view depth estimation. We

showed that the learned spatial features can benefit three downstream vision

tasks. Our work opens a new path for interaction-based representation learn-

ing for embodied agents and demonstrates the potential of learning spatial

visual representations even with a limited amount of multisensory data.

While our current implementation learns from audio rendered in a simu-

lator, the results show that the learned spatial features already benefit transfer

to vision-only tasks in real photos outside of the scanned environments (e.g.,

the NYU-V2 [193] and DIODE [215] images), indicating the realism of what

our system learned. Nonetheless, it will be interesting future work to cap-

ture the echoes on a real robot. I am also interested in pursuing these ideas

within a sequential model, such that the agent could actively decide when to

emit chirps and what type of chirps to emit to get the most informative echo

responses.
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Chapter 9

Conclusion and Future Work

In the preceding chapters, I have presented my thesis research on audio-

visual learning with videos and embodied agents, leveraging audio itself as a

supervision signal both semantically and spatially, in six stages:

• Learning to separate object sounds from unlabeled video, in Chapter 3 [75].

• Co-separating sounds of visual objects, in Chapter 4 [77].

• VisualVoice: Audio-visual speech separation with cross-modal consis-

tency, in Chapter 5 [78].

• Listen to look: Action recognition by previewing audio, in Chapter 6 [80].

• 2.5D visual sound, in Chapter 7 [76].

• VisualEchoes: Learning spatial image representations via echoloca-

tion, in Chapter 8 [74].

My thesis research has focused on addressing the question: How can

algorithms learn the “What” and “Where” about sound-making objects when

multiple sound sources are present? Leveraging audio as a semantic signal,
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I have studied how to disentangle object sounds from unlabeled videos [75,

77, 78], and how to use audio as an efficient preview for action recognition in

untrimmed videos [80]; Using audio as a spatial signal, I have studied how to in-

fer binaural audio from monaural audio by leveraging visual cues in videos [76],

and how to use echoes to learn spatial image representation [74].

Throughout my thesis research on audio-visual learning, I believe that

unsupervised or self-supervised learning from multisensory data play a positive

and crucial role in the future progress of Artificial Intelligence. Learning from

how we humans perceive and act in the world by making use of all our senses,

the long-term goal of my research is to build systems that can perceive as well

as we do by combining all the multisensory inputs. My research presented in

this dissertation has been mainly focusing on two paramount sensory streams:

vision and audition. While the progress is encouraging, there is still a long

way to go before I reach my ultimate goal. Below, I outline three main topics

that I plan to pursue next beyond this Ph.D. thesis.

9.1 Audio and Geometry

Building on my work on leveraging the spatial signal in audio presented

in Chapter 7 and Chapter 8, I would like to explore how audio can further

reveal the geometry of the environment. The room impulse response (Fig. 9.1)

recorded in an environment is influenced by the room geometry, materials, and

the sound source locations. The direct sound reveals the position of the sound

source; the early reflection conveys a sense of the environmental geometry;
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Object shapes
Room impulse response

Room layout

Figure 9.1: Audio is a rich source of information to understand the geometry
of the physical world such as the room layout and object shapes.

and the late reverberations can indicate the size of the environment. These

are rich source of information to understand the geometry of the visual world

such as the room layout and object shapes.

Many prior work in the literature addresses 3D shape reconstruction

from visual signals. In particular, it would be interesting future work to com-

bine audio and visual signals for 3D reconstruction. Moreover, I would also

like to explore how audio sensing can enable embodied agents to efficiently

map complex 3D environments, and “see” beyond visible regions. Audio can

complement visual sensing and provides strong spatial and semantic signals

for visual navigation or exploration.
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Multimodal understanding of the visual world

Material properties Object identity Dynamic sources

Ambient scene

Emotion

Conversation Egocentric activity

Figure 9.2: Audio-visual video analysis.

9.2 Audio-Visual Video Analysis

As shown in Fig. 9.2, there are many aspects that we can capitalize on

once we are able to “listen” from video, e.g., the sounds of the natural sound

makers can tell us the object identity based on the sound they emit; the mate-

rial properties of objects can be revealed when they bang against other objects;

something that draws our attention (e.g., a phone ringing) might not be the

object itself, but an event that happens to it; and understanding conversations,

recognizing egocentric activities, inferring the space and location from ambi-

ent sound, etc. These are all exciting directions to get a more comprehensive

understanding of our visual world.

My thesis research presented in Chapter 3 through 7 has studied some

of the aspects for learning from videos of audio-visual streams. My future
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Multimodal embodied learning

Touch

Hear

See Smell

Taste

Figure 9.3: Multimodal embodied learning to perceive the world by looking,
listening, touching, smelling, and tasting.

research aims at further pushing the boundaries of audio-visual learning from

video. Particularly, despite the encouraging progress presented in this disser-

tation, it remains challenging to perform audio-visual source separation for

general objects in the wild. There is a long-tail distribution of natural sound

makers. How to separate sounds for objects sporadically making sounds is a

challenging and important research problem. Furthermore, I would also like

to design better modality fusion mechanisms and network architectures for

learning audio-visual sound models from videos.
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9.3 Multimodal Embodied Learning

Beyond audio-visual learning, more broadly I am interested in exploring

other modalities for embodied learning. My ultimate goal is to build systems

that can see, hear, touch, smell, taste, and act in the world by analyzing all

the sensory inputs. In the future, I hope to have embodied agents naturally

interact with humans and the environment using all the senses (Fig. 9.3).

183



Bibliography

[1] Cisco visual networking index: Forecast and trends, 2017–2022 white

paper.

[2] Triantafyllos Afouras, Joon Son Chung, Andrew Senior, Oriol Vinyals,

and Andrew Zisserman. Deep audio-visual speech recognition. TPAMI,

2018.

[3] Triantafyllos Afouras, Joon Son Chung, and Andrew Zisserman. The

conversation: Deep audio-visual speech enhancement. In Interspeech,

2018.

[4] Triantafyllos Afouras, Joon Son Chung, and Andrew Zisserman. My lips

are concealed: Audio-visual speech enhancement through obstructions.

In ICASSP, 2019.

[5] Triantafyllos Afouras, Andrew Owens, Joon-Son Chung, and Andrew

Zisserman. Self-supervised learning of audio-visual objects from video.

In ECCV, 2020.

[6] Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning to see by

moving. In ICCV, 2015.

184



[7] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and

Sergey Levine. Learning to poke by poking: Experiential learning of

intuitive physics. In NeurIPS, 2016.

[8] Samuel Albanie, Arsha Nagrani, Andrea Vedaldi, and Andrew Zisser-

man. Emotion recognition in speech using cross-modal transfer in the

wild. In ACMMM, 2018.

[9] S. Ali and M. Shah. Human action recognition in videos using kinematic

features and multiple instance learning. PAMI, 2010.

[10] Humam Alwassel, Fabian Caba Heilbron, and Bernard Ghanem. Action

search: Spotting actions in videos and its application to temporal action

localization. In ECCV, 2018.

[11] Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Doso-

vitskiy, Saurabh Gupta, Vladlen Koltun, Jana Kosecka, Jitendra Malik,

Roozbeh Mottaghi, Manolis Savva, et al. On evaluation of embodied

navigation agents. arXiv preprint arXiv:1807.06757, 2018.

[12] Fabio Antonacci, Jason Filos, Mark RP Thomas, Emanuël AP Habets,
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determined reverberant audio source separation using a full-rank spatial

covariance model. IEEE Transactions on Audio, Speech, and Language

Processing, 2010.

[49] P. Duygulu, K. Barnard, N. de Freitas, and D. Forsyth. Object recogni-

tion as machine translation: learning a lexicon for a fixed image vocab-

ulary. In ECCV, 2002.

[50] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet,

and Andrew Zisserman. Temporal cycle-consistency learning. In

CVPR, 2019.

190



[51] David Eigen and Rob Fergus. Predicting depth, surface normals and

semantic labels with a common multi-scale convolutional architecture.

In ICCV, 2015.

[52] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction

from a single image using a multi-scale deep network. In NeurIPS, 2014.

[53] Itamar Eliakim, Zahi Cohen, Gabor Kosa, and Yossi Yovel. A fully

autonomous terrestrial bat-like acoustic robot. PLoS computational

biology, 2018.

[54] Daniel Patrick Whittlesey Ellis. Prediction-driven computational audi-

tory scene analysis. PhD thesis, Massachusetts Institute of Technology,

1996.

[55] Ariel Ephrat, Inbar Mosseri, Oran Lang, Tali Dekel, Kevin Wilson,

Avinatan Hassidim, William T Freeman, and Michael Rubinstein. Look-

ing to listen at the cocktail party: A speaker-independent audio-visual

model for speech separation. In SIGGRAPH, 2018.

[56] H Fan, Z Xu, L Zhu, C Yan, J Ge, and Y Yang. Watching a small portion

could be as good as watching all: Towards efficient video classification.

In IJCAI, 2018.

[57] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He.

Slowfast networks for video recognition. In ICCV, 2019.

191



[58] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolu-

tional two-stream network fusion for video action recognition. In CVPR,

2016.

[59] Ji Feng and Zhi-Hua Zhou. Deep miml network. In AAAI, 2017.

[60] Zeyu Feng, Chang Xu, and Dacheng Tao. Self-supervised representation

learning by rotation feature decoupling. In CVPR, 2019.

[61] Basura Fernando, Hakan Bilen, Efstratios Gavves, and Stephen Gould.

Self-supervised video representation learning with odd-one-out networks.

In CVPR, 2017.

[62] Basura Fernando, Efstratios Gavves, Jose M Oramas, Amir Ghodrati,

and Tinne Tuytelaars. Modeling video evolution for action recognition.

In CVPR, 2015.

[63] Cédric Févotte, Nancy Bertin, and Jean-Louis Durrieu. Nonnegative

matrix factorization with the itakura-saito divergence: With application

to music analysis. Neural computation, 2009.
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