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Abstract—With the explosion of graph scale of social networks,
it becomes increasingly impractical to study the original large
graph directly. Being able to derive a representative sample of
the original graph, graph sampling provides an efficient solution
for social network analysis. We expect this sample could preserve
some important graph properties and represent the original
graph well. If one algorithm relies on the preserved properties, we
can expect that it gives similar output on the original graph and
the sampled graph. This leads to a systematic way to accelerate
a class of graph algorithms. Our work is based on the idea of
stratified sampling [14], a widely used technique in statistics. We
propose a heuristic approach to achieve efficient graph sampling
based on community structure of social networks. With the aid
of ground-truth of communities available in social networks, we
find out that sampling from communities preserves community-
related graph properties very well. The experimental results show
that our framework improves the performance of traditional
graph sampling algorithms and therefore, is an effective method
of graph sampling.

Index Terms—CBS sampling, graph property preservation,
graph algorithm acceleration

I. INTRODUCTION

Many properties have been defined to characterize a graph
and these properties are very important for people to un-
derstand the graph [6]. Given a large graph with millions
or even billions of vertices and edges, it is very difficult to
use typical graph mining approaches to handle the original
graph directly. As a result, various graph sampling techniques
have been proposed for the analysis or mining of large-scale
complex networks. To our understanding, the incentive of
doing graph sampling is to get a small transformed graph
from the original large graph with preserved properties. If so,
running the algorithm on the transformed graph has approx-
imately the same effect as running it on the original graph.
Moreover, we can estimate the properties of the original graph
using the transformed graph. There will be no point if the
graph transformation procedure takes even longer time than
straightforward computation on the original graph.

What we want to propose is a sampling method, which
creates a sub-graph that well preserves graph properties. In
the meantime, it should be efficient and simple. Random
Node sampling and Random Edge sampling, as representatives
of the most classical graph sampling methods, are indeed
efficient and simple. However, the results of applying these
two algorithms on the original graph directly are less than
satisfactory [8]. It occurs to us that what if we apply these
state of the art sampling algorithms in a different way?

Community structure has become one of the most important
topological structure properties of complex networks. In real-
life social networks, nodes explicitly join various social groups
based on shared interests or background. Such groups can
be used to define a reliable and robust notion of ground-
truth communities. Yang and Leskovec [19] comprehensively
studied a set of 230 large real-world social, collaboration
and information networks and defined network communities
based on ground-truth. For instance, students from the same
school, fans of a pop star and customers who purchase the
same product can all be regarded as a community. Note
that we do not need to do community detection to get
these communities, because the community information is
readily available from the ground-truth. As such, graph pre-
processing time or complexity should not be the concern of
our framework. Therefore, we propose a new graph sampling
method based on the ground-truth of community structure
and classical graph sampling algorithms. If we do graph
sampling in every community independently and then combine
the sampling results of each community. We can expect that
the final resultant graph should reflect the community-related
graph properties very well.

The rest of the paper is organized as follows: Section II
introduces the related work, which mainly describes common
sampling objectives and approaches; In Section III, we propose
our Community-Based Sampling (CBS) framework in detail;
Section IV introduces the experiments and our analysis of the
experimental results; a brief conclusion is given in Section V.

II. RELATED WORK

Many graph sampling algorithms have been proposed and
all these algorithms have a sense of randomly selecting vertices
or edges (maybe according to current knowledge of the graph).
However, they arise from different contexts and have different
problem dimensions or foci. In this section, we provide a short
taxonomy of graph sampling works. Refer to [6] for a more
detailed survey.

A. Common Sampling Objectives
1) Get a subset of representative vertices: This is the

usual motivation from sociology studies, e.g. poll the opinion
of the sampled vertices (people) [16]. In many scenarios,
target population can be sampled directly, e.g. phone number,
random street survey, etc. In other scenarios, target population
is hidden, e.g. drug abusers in urban area. In this latter case,



researchers have to execute certain graph sampling algorithm
on a graph to explore the hidden population.

2) Preserve certain property of the original graph: A prop-
erty of a graph can be viewed as a (possibly vector) function
f(G). Sometimes, we pursue exact property preservation.
Sometimes, we only want to preserve the property within
certain error margin. After performing sampling, two things
can be done:

• Estimate graph properties: If we know some property is
preserved on the sampled graph G

s

, we can calculate
f(G

s

) as an estimator for f(G).
• Support graph algorithms: Many graph algorithms aim at

optimizing certain objective associated with some graph
properties. If we can preserve those properties on G

s

,
we may expect to obtain similar results by running the
algorithm on G

s

instead of G. This gives a general
method to accelerate a class of graph algorithms.

3) Generate random graph: Graph generation is an im-
portant topic in its own right. However, some works in the
literature on graph generation also use the phrase like “graph
sampling”. One can view a graph generation model as a family
of graphs G. The generation procedure is to sample one graph
G from G. For example, the process of performing an edge
sampling is indeed the generation of an Erdős-Rényi Network
[2].

B. Common Sampling Approaches
1) Vertex Sampling: Vertex Sampling is the most obvious

way to create a sampled graph. We first select V
s

⇢ V directly
without topology information (e.g. uniformly or according to
some distribution on V ). Then we let E

s

= {(u, v) 2 E|u 2
V

s

, v 2 V

s

}, namely only edges between sampled vertices are
kept. Similar category has been defined by Leskovec in [8]
where it is called “sampling by random node selection”.

2) Edge Sampling: Similar to Vertex Sampling, one can
also select edges from the original graph. We first select
E

s

⇢ E somehow. Then we let V (1)
s

= {u, v|(u, v) 2 E

s

}.
This definition only arises in some theoretical discussions of
basic sampling methods on graphs. A more realistic definition
is to let V

(2)
s

= V . Then the setting is the same as graph
(edge) sparsification. We adopt the second definition of Edge
Sampling in our work. Similar category has been defined by
Leskovec in [8] where it is called “sampling by random edge
selection”.

3) Traversal Based Sampling: Traversal Based Sampling
has a very long history and is still the research focus in
recent years. It is also called topology based sampling [1]
or sampling by exploration [8]. The sampler starts with a
set of initial vertices (and/or edges) and expands the sample
based on current observations. Doerr and Blenn [4] formalized
the framework for three intuitive graph traversal methods,
which are Breadth First Sampling, Depth First Sampling and
Random First Sampling. Snowball Sampling [5], which is
very similar to Breadth First Sampling, has long been used
in sociology studies, where an investigation is performed on
the hidden population (e.g. drug abusers). Forest Fire Sampling

is a probabilistic version of Snow Ball Sampling and it was
originally proposed in [9] as a graph generation model, which
was subsequently adapted to perform graph sampling in [8].
Random Walk Sampling also arises from different context.
It can be shown in [10] that Random Walk Sampling on
undirected graphs results in uniform distribution on edges.
Metropolis-Hastings Random Walk Sampling algorithm [11]
was widely used in Markov Monte Carlo Chain to obtain
a desired vertex distribution from an arbitrary undirected
connected graph. Multi-Dimensional Random Walk Sampling
[15], which is also called Frontier Sampling, was proposed
to address the issue that the original Random Walk Sampling
may have high bias according to different initial vertex(es).

Recently, [21] proposed a novel method to derive an aux-
iliary graph and an affiliation graph to help the graph mining
process of the original target graph. The so-called hybrid
social-affiliation network can help to sample a graph indirectly
but efficiently. The community membership information dis-
cussed in our work can also be transformed into a hybrid
social-affiliation network.

III. COMMUNITY-BASED SAMPLING

In this section, we propose the Community-Based Sampling
(CBS) framework.

A. Motivation for Community-Based Sampling

Although many algorithms have been developed, a large
chunk of previous literature is devoted to property estimation.
That is, the sampling algorithm does not necessarily preserve
certain property. As long as an accurate estimator can be
developed based on the sampled graph, the sampling procedure
is deemed useful. In our context, we focus on property
preservation because it yields a generic method to accelerate a
class of graph algorithms. This calls for a comprehensive re-
evaluation of classic simple/fast sampling procedures regard-
ing the property preservation performance. Note that, many
previous sampling algorithms only utilize the graph topology
(i.e. vertices and edges). On many modern social networks,
one can further get some auxiliary information in form of node
level attributes. The auxiliary information can be leveraged to
improve the sampling procedures. Among different auxiliary
information, community membership is widely available (e.g.
group/school on Facebook, conference/journal in a publication
network). Towards this end, we devote this paper to investigate
how community membership information can be leveraged to
improve existing sampling processes.

B. Overall Design of CBS

For those classical graph sampling algorithms, the sampling
process is performed on the entire graph. The sampling process
may result in large variance for those community-related graph
metrics. It is likely that skewed number of members are
sampled from each community, e.g. a large community only
gets a few representatives or a small community gets a lot of
representatives in the sampled graph. One usual approach to
alleviate sampling variance across different types of targets is



(a) Get an unprocessed community (b) Perform sub-graph sampling in the community

(d)  Connect all sub-graphs(c)  Repeat the above process on all communities

Figure 1: Sampling Process of CBS Framework

to adopt the idea of stratum sampling. The core idea of CBS
framework is to use community as stratum. It first performs a
sampling algorithm within each community and then connect
the communities by common edges incident to those commu-
nities. Since there are two types of objects, i.e. vertex and edge,
in a graph, the final result is not just stratum-based sampling
on vertices. Given the different sampling algorithms used as
subroutine in CBS framework, the result varies. Nevertheless,
the intuition is similar to stratum sampling.

C. Procedure of the CBS Framework
The procedure of the CBS framework is illustrated in Fig 1.

There are four key steps:
(a) Get an unprocessed community: Based on the commu-

nity ground-truth obtained from online social networks, we get
an unprocessed community and compose the sub-graph in the
community.

(b) Perform sub-graph sampling in the community: We
use some classical graph sampling algorithm and perform
sub-graph sampling inside the community to select a certain
fraction of nodes along with a set of edges.

(c) Repeat the above process on all communities: We
perform sub-graph sampling independently inside each com-
munity to get a sampled graph for every community.

(d) Connect all sub-graphs: We connect all sampled
graphs obtained from sub-graph sampling by adding all inter-
community edges.

IV. EXPERIMENTAL EVALUATION

In this section, we present the results of experiments on
four real-life graphs to demonstrate the effectiveness of our
proposed method by applying the proposed framework on
eight classical graph sampling algorithms.

A. Dataset
We evaluated the proposed CBS framework on four real-

world datasets.

1) DBLP collaboration network [19]: The DBLP collabo-
ration network is a co-authorship network where two authors
are connected if they co-author at least one paper. Publication
venue, e.g, journal or conference, defines an individual ground-
truth community; authors who published in a particular journal
or conference form a community. The original dataset does not
provide complete community ground-truth. Therefore, we did
some pre-possessing to compose a new graph based on the
communities provided as our research subject.

2) Amazon product co-purchasing network [19]: The Ama-
zon dataset is collected by crawling the Amazon website. It is
based on the “Customers Who Bought This Item Also Bought”
feature of the Amazon website. If a product i is frequently
co-purchased with product j, the graph contains an undirected
edge from i to j. Each product category provided by Amazon
defines each ground-truth community. Similar to the DBLP
dataset, the original dataset does not provide complete com-
munity ground-truth. Therefore, we did some pre-possessing
to compose a new graph based on the communities provided
as our research subject.

3) Flickr photo sharing dataset [20]: Flickr is a photo
sharing platform, where users can share their contents, upload
tags and subscribe to different interest groups. The friendship
and the commentship (i.e., who comments on whose photos)
among the set of users define the ground-truth communities.
The community ground-truth for this dataset is complete, and
195 communities are defined.

4) BlogCatalog social blog dataset [20]: BlogCatalog is
a social blog directory website, which manages the bloggers
and their blogs. This dataset is crawled from BlogCatalog
which contains the friendship network crawled and group
memberships. The group memberships define the ground-truth
communities. The community ground-truth for this dataset is
complete, and 39 communities are defined.

Dataset Name Nodes Edges Communities
DBLP 260,691 949,360 13,431

Amazon 318,725 878,069 269,540
Flickr 80,513 5,899,882 195

BlogCatalog 10,312 333,983 39

B. Baselines

As mentioned in Section I, graph sampling should be
efficient in order to make it a meaningful process. Therefore,
the eight graph sampling algorithms we study in our work are
all relatively simple and efficient classic algorithms, which
have all been summarized by Leskovec and Faloutos in [8].

• Random Node (RN) Sampling: we uniformly select a set
of nodes N at random. Then we include all the edges
among the N sampled nodes, and the resultant graph is
the desired sample of the original graph.

• Random Edge (RE) Sampling: we uniformly select a set
of edges E at random. Then we include all the nodes,
which serve as the endpoints of the sampled edges in
E, and the resultant graph is the desired sample of the
original graph.



• Random Walk (RW) Sampling: we uniformly choose an
initial node u at random, then the next node v is randomly
chosen from all of u’s neighbor nodes. Node v and
edge (u, v) will be sampled in this process and the
random walk continues from node v. At every step,
with probability c = 0.15 (the value commonly used in
literature) we jump back to the starting node and re-start
the random walk.

• Random Jump (RJ) Sampling: this is the same as Random
Walk sampling, except that at every step with probability
c = 0.15 we can randomly jump to any node in the graph
instead of the starting node only.

• Random Degree Node (RDN) Sampling: we select a set
of nodes N based on the degree of the nodes. The
probability of a node being selected is proportional to
its degree. Then we include all the edges among the
N sampled nodes, and the resultant graph is the desired
sample of the original graph.

• Random PageRank Node (RPN) Sampling: we select a set
of nodes N based on the PageRank score of the nodes.
The probability of a node being selected is proportional
to its PageRank weight. Then we include all the edges
among the N sampled nodes, and the resultant graph is
the desired sample of the original graph.

• Random Node-Edge (RNE) Sampling: we first uniformly
select a node at random and then uniformly at random
choose an edge incident to the node. We repeat the above
process to get the sampled graph.

• Hybrid Random Edge (HYB) Sampling: we perform a
step of RNE sampling with probability p, or perform a
step of RE sampling with probability 1 � p. Based on
the recommendation from [7], we use p = 0.8 in our
evaluation.

C. A Case Study via Visualization

Firstly, we examine how well the sampled graph reflects the
properties of the original graph by visualizing two commonly
studied distributions.

• Degree Distribution: If we randomly choose a node X 2
V , and let

p

deg

(k) = Pr{d(X) = k}

p

deg

(k) is thus the p.d.f. for the degree distribution. In
the figure of Degree Distribution, the x-axis represents the
degree of nodes, and the y-axis represents the cumulative
percent, which denotes the percentage of nodes that are
below the corresponding degree level. Detailed study of
degree distribution has been conducted in [17].

• Clustering Coefficient Distribution: The local clustering
coefficient of a graph is the measure of the extent
to which one’s friends are also friends of each other.
This measure was first discussed in detail by Watts and
Strogatz in a 1998 paper in Nature [18]. For node v

i

, the
local clustering coefficient denoted by c

i

is defined as the
ratio of the number of (v

j

, v

i

, v

k

) triangles to the number

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Degree

C
u
m

u
la

tiv
e
 P

e
rc

e
n
t

 

 

Origin
CBS−RN
CBS−RE
RN
RE
RW
RJ
RDN
RPN

10
−2

10
0

10
−0.9

10
−0.6

10
−0.3

10
0

Clustering Coefficient

C
u
m

u
la

tiv
e
 P

e
rc

e
n
t

 

 

Origin
CBS−RN
CBS−RE
RN
RE
RW
RJ
RDN
RPN

Figure 2: Distribution Visualization

of (v
j

, v

i

, v

k

) connected triplets. Formally,

c

i

=
2l

i

d

i

(d
i

� 1)

where d

i

donotes the degree of node v

i

and l

i

denotes
the number of edges between neighbors of v

i

, with c

i

2
[0, 1]. In the case where d

i

= 1 or d
i

= 0, we have c
i

= 0.
In the figures of Clustering Coefficient Distribution, we
divide the possible value range of clustering coefficient,
namely 0 to 1, into small intervals. We count the number
of nodes that fall into a certain interval that we define
and then we normalize the count. In the figures of this
distribution, the x-axis represents the clustering coeffi-
cient, and the y-axis represents the cumulative percent,
which denotes the percentage of nodes that are below the
corresponding clustering coefficient level.

For all the sampling algorithms, we use the sampling rate of
approximately 10%. The evaluation is based on visual observa-
tion on how similar the two distributions of the sampled graph
are to that of the original graph. For better observation, we
only plot two algorithms under our CBS framework, namely
CBS-RN and CBS-RE. The distributions of the original graph
are obtained in advance.

Fig 2 depicts the Degree Distribution, Clustering Coefficient
Distribution of the original graph and sampled graphs obtained
for DBLP Dataset. We can see that the Degree Distributions
and Clustering Coefficient Distributions of the sampled graphs
created by CBS-RN and CBS-RE are obviously more similar
to that of the original graph. The performance becomes much
better under the CBS framework for Random Node Sampling
and Random Edge Sampling. Because RDN sample the graph
according to the degree distribution, nodes of higher degree
have better chance to be sampled and these nodes are very
important nodes to preserve these two distributions. Naturally,
as is shown in the result, RDN also performs quite well
in preserving these two distributions. Therefore, the visual
inspection suggests that the proposed framework helps to
preserve these two important distributions in graph sampling.

D. Graph Property Preservation
In this section, we present experimental results of all graph

properties studied in our work at sampling rate of 10% to
see how graph properties are preserved. For the two distribu-
tions of the previous section, we use Kolmogorov-Smirnov



D-statistic to quantify the results for comparison. K-S D-
statistic can be used to compare the difference between two
distributions. It is defined as D = max

x

{|F 0
(x) � F (x)|},

where x is over the range of the random variable, and F and
F

0
are the two empirical cumulative distribution functions of

the data. We use it in our work to compute the maximum
difference between the cumulative distribution functions of
the distributions obtained from the original graph and that of
the sampled graph. The possible value of K-S D-statistic is
between 0 and 1. The smaller the value, the more similar the
property of the sampled graph is to the original graph. We
also study five other global graph properties:

• Assortativity: Assortativity is generally defined as the
Pearson Correlation of similarity between neighboring
vertices. One can use degree as the similarity measure
[12] and leads to the following definition. The distribution
of remaining edges (except for the one that link the two
vertices under consideration) is: q

k

= (k+1)pdeg(k+1)P
j jpj

.
Define the joint distribution of the degree of two vertices
by e

j,k

. Then the assortativity is defined as:

r =
1

�

2
q

X

j,k

jk(e
j,k

� q

j

q

k

)

The network is said to be assortative when r > 0, non-
assortative when r = 0, and disassortative when r < 0.

• Average Node Degree: Average degree of a graph is the
expected value:

E[d(X)] =
X

k

kp

deg

(k)

where p

deg

(k) is the probability mass function of the
node degree of the graph.

• Graph Density: Given an undirected graph G = (V,E)
with n nodes and m edges, graph density is defined as
the ratio of observed number of edges over the maximum
possible number of edges:

density =
m�
n

2

� =
2m

n(n� 1)

• Power Law Exponent: After obtaining the degree distribu-
tion, one can fit the power law exponent �, s.t. the fitted
distribution p

fit

(k) / k

�� is closest to the observed
degree distribution p

deg

(k). In [13], the detailed method
of power law fitting is described and we use the following
formula to extract the exponent:

� = 1 + n[
nX

i=1

ln

d

i

d

min

]

�1

where d

i

(i = 1 ... n) are the measured values of degree
of nodes and d

min

is the minimum value of degree for
which the power-law behavior holds. This property only
makes sense when the original and sampled graphs are
close to power-law graphs.

• Average Clustering Coefficient: The network average
clustering coefficient [3], denoted by c

l

, is defined as:

c

l

=
1

n

nX

i=1

c

i

where c

i

is the local clustering coefficient of every vertex
in the network.

Table I shows the results for the DBLP dataset. The last
column is the ground-truth for the dataset. We can see that the
CBS framework performs very well in preserving community-
related graph properties like average clustering coefficient,
power law exponent, degree distribution and clustering co-
efficient distribution. Metric values obtained under the CBS
framework are generally closer to the ground-truth. However,
for density and average degree, CBS does not help to preserve
them since they are not quite related to the community struc-
ture of the graph. Observe that the metric values of density
and average degree are much higher in sampled graphs under
the CBS framework. The reason for the over-estimation is that
higher degree nodes may exist in several communities at the
same time in the community ground-truth. Therefore, these
nodes have better chance to be sampled, thus increasing the
metric value of the average degree and density in the sampled
graph. The results of the other three datasets are similar, so
we do not present them in the paper.

E. Comparison of algorithms with and without using CBS

In this section, we directly compare sampling results for
sampling algorithms with and without CBS. We study the
graph property at different sampling rate from 0% to 50%,
above which graph sampling may not be quite meaningful
anymore. We present our results of the two most representative
properties.

Fig 3 shows the experimental results of K-S D-statistic
of degree distribution. In the eight sub-figures, the blue line
represents the original sampling algorithm and the green
line represents the corresponding community-based sampling
algorithm. Observe that, except for RDN, community-based
sampling improves the performance of the original random
sampling algorithm significantly. The reason why CBS does
not improve the performance of RDN may be that the degree
distribution in each community may not agree with the degree
distribution on the global scale. Therefore, there will be no
point in using RDN inside each community. Moreover, RDN
sampling itself already performs quite well in preserving
degree distribution.

Fig 4 shows the experimental results regarding power law
exponent. Again, in the eight sub-figures, the blue line repre-
sents the original sampling algorithm and the green line repre-
sents the corresponding community-based sampling algorithm
in each of the subfigure. The black dotted line represents the
power law exponent for the entire network, namely the ground-
truth. We can see that CBS helps the metric value to converge
much faster, especially for RN, RE, RJ, RNE and HYB. The
power law exponent of the sampled graphs under the CBS



Table I: Graph Properties of DBLP Collaboration Network
RN CBS-RN RE CBS-RE RW CBS-RW RJ CBS-RJ RDN CBS-RDN RPN CBS-RPN RNE CBS-RNE HYB CBS-HYB Origin

Assortativity 0.224 0.247 0.110 0.598 0.063 0.307 -0.034 0.334 0.775 0.394 0.299 0.292 -0.046 0.319 -0.019 0.324 0.260
Average Degree 0.721 4.804 1.155 8.757 2.995 8.239 1.979 7.228 5.501 7.067 3.588 6.209 1.071 6.013 1.082 6.319 7.283

Density(⇥10�5 ) 2.77 16.7 4.39 35.9 11.5 31.7 7.33 27.6 20.5 28.9 13.5 25.1 3.97 22.9 4.01 24.4 2.79
Powerlaw Exponent 1.443 1.279 1.751 1.259 1.294 1.271 1.576 1.276 1.259 1.269 1.302 1.275 2.044 1.281 2.044 1.279 1.230

Average CC 0.071 0.242 <0.001 0.406 0.157 0.439 0.085 0.425 0.313 0.312 0.230 0.267 <0.001 0.329 <0.001 0.338 0.646
DD D-statistic 0.593 0.361 0.636 0.251 0.427 0.317 0.622 0.338 0.273 0.316 0.436 0.343 0.647 0.362 0.647 0.350 0

CCD D-statistic 0.873 0.422 0.947 0.171 0.648 0.223 0.911 0.295 0.238 0.246 0.502 0.367 0.949 0.393 0.950 0.357 0

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

Sampling Size

D
e

g
re

e
 D

is
tr

ib
u
tio

n
 K

−
S

 D
−

st
a

tis
tic

 

 

CBS−RN

RN

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

Sampling Size

D
e

g
re

e
 D

is
tr

ib
u
tio

n
 K

−
S

 D
−

st
a

tis
tic

 

 

CBS−RE

RE

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

Sampling Size

D
e
g

re
e
 D

is
tr

ib
u

tio
n

 K
−

S
 D

−
st

a
tis

tic

 

 

CBS−RW

RW

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

Sampling Size

D
e
g

re
e
 D

is
tr

ib
u

tio
n

 K
−

S
 D

−
st

a
tis

tic

 

 

CBS−RJ

RJ

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

Sampling Size

D
e
g

re
e
 D

is
tr

ib
u

tio
n

 K
−

S
 D

−
st

a
tis

tic

 

 

CBS−RDN

RDN

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

Sampling Size

D
e
g

re
e
 D

is
tr

ib
u

tio
n

 K
−

S
 D

−
st

a
tis

tic

 

 

CBS−RPN

RPN

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

Sampling Size

D
e
g

re
e
 D

is
tr

ib
u

tio
n

 K
−

S
 D

−
st

a
tis

tic

 

 

CBS−RNE

RNE

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

Sampling Size

D
e
g

re
e
 D

is
tr

ib
u

tio
n

 K
−

S
 D

−
st

a
tis

tic

 

 

CBS−HYB

HYB

Figure 3: Degree Distribution D-statistic

framework are also very close to the ground-truth even for
sampling rate as low as 5%.

F. Evaluation of Sampling Complexity

In this subsection, we present the runtime of all the graph
sampling algorithms studied at sampling rate 10%. All al-
gorithms are implemented in Python and executed on a 64
bit MacOS machine with an 2.3GHz Intel Core i7 processor
and 8 GB RAM. Two input files include the original graph
file in adjacency list format and the community ground-truth
file, in which each line represents a community. All time
measurements are average end-to-end time in unit of seconds.

From Table II, we can see that for the original algorithms
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Figure 4: Power Law Exponent

which are very efficient to begin with, adding the CBS
framework only slightly increases the total execution time
because the same algorithm has to be applied community by
community. For some algorithms like RJ, RNE and HYB, the
CBS framework even reduces the execution time significantly.
The reason is that it is faster to collect enough number of nodes
inside each community than from the original large graph.

G. Accelerate Graph Algorithms via Sampling

One of the applications of graph sampling is to accelerate
a class of algorithms by applying those algorithms on the
sampled graph instead of the original large graph. Finally, we
apply one algorithm on the original graph and sampled graphs



Table II: Graph Sampling Time in Seconds (Sampling Rate: 10%)
‘

RN CBS-RN RE CBS-RE RW CBS-RW RJ CBS-RJ RDN CBS-RDN RPN CBS-RPN RNE CBS-RNE HYB CBS-HYB
DBLP 2.8 3.2 5.1 10.1 5.1 14.5 70.6 12.7 18.5 27.6 19.6 32.2 207 12.3 302.5 19.8

Amazon 2.8 4.5 5.3 20.4 24.8 29.1 78.2 34.2 23.7 231.2 28.2 278.2 248.2 34.9 367.2 51.8
Flickr 15.1 16.3 33.3 37.2 13.6 34.6 20.8 27.9 20.5 33.8 26.2 39.8 34.5 31.2 424.2 56.8

BlogCatalog 1.1 1.1 2.1 1.7 1.1 1.8 1.1 1.8 1.3 1.7 1.9 1.9 1.4 1.7 4.5 2.1

Table III: Intersection among Top 100 Ranked Nodes
RN CBS-RN RE CBS-RE RW CBS-RW RJ CBS-RJ RDN CBS-RDN RPN CBS-RPN RNE CBS-RNE HYB CBS-HYB

DBLP 7.8 41.2 7.6 40.2 15 38.6 7.2 40.7 42.7 47.1 42.3 48.3 17.2 44.3 7.2 43.1
Amazon 6.1 29.5 10.6 40.4 27.1 27.4 26.0 39.2 46.6 47.4 39.4 45.1 4.4 44.4 3.2 40.4
Flickr 8.8 20.3 9.4 50.4 20.1 58.6 18.2 57.6 56.2 59.7 63.3 59.7 10.2 61.7 9.9 62.3

BlogCatalog 10.6 12.6 35.8 69.9 52.1 70.5 42.1 72.8 79.7 72.1 80.9 76.6 50.2 68.2 58.3 69.6

to demonstrate the advantage of performing graph sampling.
In particular, we apply the PageRank algorithm on the

original graph and the sampled graph to get the top 100 ranked
nodes. PageRank is a way of measuring the importance of
nodes and the purpose of using PageRank score is mainly to
get top ranked nodes. When the original graph is very large,
it is inefficient to apply the algorithm on the original graph
directly. If we can get an acceptable number of top ranked
nodes by applying the PageRank algorithm on the sampled
graph, it will save a lot of time.

We apply the same PageRank algorithm on the original
graph and the sampled graphs. To compare the results, we
calculate the number of same nodes among the 100 top ranked
nodes. Table III shows the corresponding results in terms of
their average. We can see that algorithms under the CBS
framework can generally get much more highly ranked nodes
than the original algorithms. The improvement for RDN and
RPN is not significant since RDN and RPN have already
performed very well without the CBS framework, which is
expected. RDN sample more high degree nodes, which usually
turn out to rank high under PageRank. As for RPN, it samples
nodes according to the PageRank score, which naturally leads
to the preservation of top ranked nodes.

V. CONCLUSION

In this work, based on the idea of stratified sampling,
we have proposed the so-called Community-Based Sampling
framework. By leveraging the knowledge of ground-truth com-
munities provided by social networks and integrate them with
classical random sampling algorithms, we can sample every
community independently first and then combine the sub-
graphs obtained, instead of sampling the original large graph
directly. Through a series of experiments using real world
datasets, we have demonstrated the effectiveness of CBS. Our
results show that the sampled graph created by the proposed
framework preserves community-related graph properties very
well. It improves the performance of classical efficient graph
sampling algorithms significantly without sacrificing their sim-
plicity and efficiency. Therefore, Community-Based Sampling
can serve as an effective method for performing large graph
sampling.
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